Inteligência artificial nas operações de aviação

Um estado da arte

Autores

DOI:

https://doi.org/10.18667/cienciaypoderaereo.788

Palavras-chave:

Aviação, inteligência artificial, aprendizado de máquina, trajetórias

Resumo

Nos últimos anos, o uso da inteligência artificial (IA) cresceu significativamente, impulsionado em grande parte pela expansão da Indústria 4.0 e pela crescente geração de dados em diversos setores. A indústria aeronáutica não foi exceção a esse avanço tecnológico, e inúmeros estudos exploraram as aplicações da ia nesse campo. Este estudo tem como objetivo oferecer uma análise abrangente e atualizada sobre o uso da ia nas operações aéreas, com um foco especial no planejamento de voos, na previsão de trajetórias e na otimização de recursos. Através desta análise, buscamos aprofundar nos avanços mais recentes e nas metodologias utilizadas no setor, identificando os principais algoritmos e técnicas empregados. Além disso, o estudo oferece uma visão integrada das aplicações de ia na aviação, destacando seu potencial para melhorar a eficiência operacional, a segurança e a tomada de decisões. Finalmente, esperamos identificar as áreas de pesquisa e desenvolvimento mais promissoras para contribuir com o progresso e a inovação neste campo em constante evolução.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

ADS-B Exchange. (2022). What is adsbx? [online]. https://www.adsbexchange.com/

Arts, E. (2021). A Novel Approach to Flight Phase Identification using Machine Learning [master dissertation, University of Hamburg]. https://elib.dlr.de/141738/1/EmyArtsMasterthesis.Pdf

Barratt, S. T., Kochenderfer, M. J. & Boyd, S. P. (2019). Learning Probabilistic Trajectory Models of Aircraft in Terminal Airspace from Position Data. ieee Transactions on Intelligent Transportation Systems, 20(9), 3536-3545. https://doi.org/10.1109/TITS.2018.2877572 DOI: https://doi.org/10.1109/TITS.2018.2877572

Besada, J. A., Garcia, J., de Miguel, G., Jimenez, F. J., Gavin, G., & Casar, J. R. (2000). Data Fusion Algorithms based on Radar and ads Measurements for atc Application. In: The Record of the ieee 2000 International Radar Conference (P.93-103). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/RADAR.2000.851812 DOI: https://doi.org/10.1109/RADAR.2000.851812

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag. https://www.springer.com/gp/book/9780387310732

Bleu-Laine, M.-H. (2021). A Methodology for the Prediction and Analysis of Precursors to Flight Adverse Events [master dissertation, Georgia Institute of Technology]. https://smartech.gatech.edu/handle/1853/64698

Bzdok, D., Altman, N. & Krzywinski, M. (2018). Points of Significance: Statistics versus Machine Learning. Nature

Methods, 15(4), 233-234. https://doi.org/10.1038/NMETH.4642 DOI: https://doi.org/10.1038/nmeth.4642

Calvo-Fernández, E. (2017). Planificación de trayecctorias 4D de aeronaves en entornos multiobjetivo [doctoral dissertation, Universidad Politécnica de Madrid]. https://oa.upm.es/47387/1/ESTHER_CALVO_FERNANDEZ.pdf

Cheung, J. C. H. (2018). Flight Planning: Node-Based Trajectory Prediction and Turbulence Avoidance. Meteorological Applications, 25(1), 78-85. https://doi.org/10.1002/MET.1671 DOI: https://doi.org/10.1002/met.1671

Choi, S., Kim, Y. J., Briceno, S. & Mavris, D. (2016, 25-29 September). Prediction of Weather-Induced Airline Delays based on Machine Learning Algorithms [paper]. 2016 ieee/aiaa 35th Digital Avionics Systems Conference (DASC), Sacramento, California, United States. https://doi.org/10.1109/DASC.2016.7777956 DOI: https://doi.org/10.1109/DASC.2016.7777956

China Meteorological Data Network (CMDC). (2022). China Meteorological Data Network. About Us. [online]. https://data.cma.cn/en/?r=article/getLeft&id=348&keyIndex=2

Courchelle, V., Soler, M., González-Arribas, D. & Delahaye, D. (2019). A Simulated Annealing Approach to 3D Strategic Aircraft Deconfliction based on En-Route Speed Changes under Wind and Temperature Uncertainties. Transportation Research Part C: Emerging Technologies, 103, 194-210. https://doi.org/10.1016/J.TRC.2019.03.024 DOI: https://doi.org/10.1016/j.trc.2019.03.024

Dalkiran, F. Y. & Toraman, M. (2021). Predicting Thrust of Aircraft using Artificial Neural Networks. Aircraft Engineering and Aerospace Technology, 93(1), 35-41. https://doi.org/10.1108/AEAT-05-2020-0089 DOI: https://doi.org/10.1108/AEAT-05-2020-0089

De Leege, A. M. P., Van Paassen, M. M. & Mulder, M. (2013, 19-22 August). A Machine Learning Approach to Trajectory Prediction [paper]. AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, Massachusetts, United States. https://doi.org/10.2514/6.2013-4782 DOI: https://doi.org/10.2514/6.2013-4782

De Oliveira, M. (2019). A Data-Driven Approach for Air Traffic Operational Performance Characterization and Prediction [thesis seminar, São José dos Campos]. https://tinyurl.com/48fvv4pa

European Centre for Medium-Range Weather Forecasts (ECMWF). (2022). About Us [online]. https://www.ecmwf.int/en/about

EUROCONTROL. (2004). User Manual for the Base of Aircraft Data (BADA) [online]. https://www.eurocontrol.int/publication/user-manual-base-aircraft-data-bada

Federal Aviation Administration (FAA). (2015). Next Generation Air Transportation System (NextGen). FAA Website, May 2010, 28-30. https://www.faa.gov/nextgen/

Finnish Meteorological Institute. (2013). Data Sets Made Available [online]. https://en.ilmatieteenlaitos.fi/opendata-sets-available

FlightAware. (2020). Rastreador de vuelos / Estado de vuelos [online]. https://flightaware.com/FlightRadar24

FlightRadar24. (2020). Live Flight Tracker - Real-Time Flight Tracker Map [online]. https://www.flightradar24.com/how-it-works

Fukuda, Y., Shirakawa, M. & Senoguchi, A. (2010). Development and Evaluation of Trajectory Prediction Model. In:

th Congress of the International Council of the Aeronautical Sciences 2010 (icas 2010) (P. 3090-3097). ICAS

Secretariat. https://www.proceedings.com/content/009/009889webtoc.pdf

Gössling, S. & Humpe, A. (2020). The Global Scale, Distribution and Growth of Aviation: Implications for Climate Change. Global Environmental Change, 65. https://doi.org/10.1016/j.gloenvcha.2020.102194 DOI: https://doi.org/10.1016/j.gloenvcha.2020.102194

Hamed, M. G. (2014). Non-Parametric High Confidence Interval Prediction: Application to Aircraft Trajectory Prediction[doctoral dissertation, Université de Toulouse]. https://tel.archives-ouvertes.fr/tel-00951327

Hamed, M. G., Gianazza, D., Serrurier, M. & Durand, N. (2013, June). Statistical Prediction of Aircraft Trajectory: Regression Methods vs. Point-Mass Model [paper]. 10th USA/Europe ATM R&D Seminar, Chicago, Illinois, United States. http://www.atmseminar.org/

Harada, A., Takeichi, N. & Oka, K. (2019, 7-11 January). An Optimal Trajectory-Based Trajectory Prediction Method for Automated Traffic Flow Management [paper]. aiaa Scitech 2019 Forum, San Diego, California, United States. https://doi.org/10.2514/6.2019-1360 DOI: https://doi.org/10.2514/6.2019-1360

Hong, S. & Lee, K. (2015). Trajectory Prediction for Vectored Area Navigation Arrivals. Journal of Aerospace Information Systems, 12(7), 490-512. https://doi.org/10.2514/1.I010245 DOI: https://doi.org/10.2514/1.I010245

Hrastovec, M. & Solina, F. (2016). Prediction of Aircraft Performances based on Data Collected by Air Traffic Control Centers. Transportation Research Part C: Emerging Technologies, 73, 167-182. https://doi.org/10.1016/j.trc.2016.10.018 DOI: https://doi.org/10.1016/j.trc.2016.10.018

Hwang, I., Hwang, J. & Tomlin, C. (2003, 11-14 August). Flight- Mode-Based Aircraft Conflict Detection using a Residual- Mean Interacting Multiple Model Algorithm [paper]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, United States. https://doi.org/10.2514/6.2003-5340 DOI: https://doi.org/10.2514/6.2003-5340

Jeon, D., Eun, Y. & Kim, H. (2015). Estimation Fusion with Radar and ads-b for Air Traffic Surveillance. International Journal of Control, Automation and Systems, 13(2), 336-345. https://doi.org/10.1007/s12555-014-0060-1 DOI: https://doi.org/10.1007/s12555-014-0060-1

Kanneganti, S. T., Chilson, P. B. & Huck, R. (2018, 23-26 July). Visualization and Prediction of Aircraft Trajectory using ads-b [paper]. naecon 2018 - ieee National Aerospace and Electronics Conference, Dayton, Ohio, United States. https://doi.org/10.1109/NAECON.2018.8556782 DOI: https://doi.org/10.1109/NAECON.2018.8556782

Kiesiläinen, J. (2020). Predicting Aircraft Arrival Times with Machine Learning [master dissertation, University of Jyväskylä]. https://jyx.jyu.fi/bitstream/handle/123456789/69366/1/URN%3ANBN%3Afi%3Ajyu-202006023624.pdf

Le Fablec, Y. & Alliot, J.-M. (1999, May). Using Neural Networks to Predict Aircraft Trajectories [paper]. International Conference on Artificial Intelligence.

Lin, Y., Yang, B., Zhang, J. & Liu, H. (2019). Approach for 4-D Trajectory Management based on hmm and Trajectory Similarity. Journal of Marine Science and Technology (Taiwan), 27(3), 246-256. https://doi.org/10.6119/JMST.201906_27(3).0007

Louridas, P. & Ebert, C. (2016). Machine Learning. ieee Software, 33(5), 110-115. https://doi.org/10.1109/MS.2016.114 DOI: https://doi.org/10.1109/MS.2016.114

Lymperopoulos, I., Lygeros, J. & Lecchini, A. (2006, 21-24 August). Model-Based Aircraft Trajectory Prediction during Takeoff [paper]. aiaa Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, United States. https://doi.org/10.2514/6.2006-6098 DOI: https://doi.org/10.2514/6.2006-6098

Ma, L. & Tian, S. (2020). A Hybrid cnn-lstm Model for Aircraft 4D Trajectory Prediction. ieee Access, 8, 134668-134680. https://doi.org/10.1109/ACCESS.2020.3010963 DOI: https://doi.org/10.1109/ACCESS.2020.3010963

McCorduck, P. & Cfe, C. (2004). Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence. crc Press. https://doi.org/10.1201/9780429258985 DOI: https://doi.org/10.1201/9780429258985

Medeiros, D. M. C., Silva, J. M. R. & Bousson, K. (2012). Rnav and rnp ar Approach Systems: The Case for Pico Island Airport. International Journal of Aviation Management (ijam), 1(3), 181. https://doi.org/10.1504/ijam.2012.045738 DOI: https://doi.org/10.1504/IJAM.2012.045738

Meteoblue. (2022). Meteoblue. Weather Close to You [online]. https://content.meteoblue.com/es

World Meteorological Organization (wmo). (2022). About the amdar Observing System [online]. https://public.wmo.int/en/programmes/global-observing-system/amdar-observing-system

Min, W., Jiawei, W., Jinhui, G., Lihua, S. & Bogong, A. (2020). Multi-Point Prediction of Aircraft Motion Trajectory based on ga-Elman-Regularization Neural Network. Integrated Ferroelectrics: An International Journal, 210(1), 116-127. https://doi.org/10.1080/10584587.2020.1728853 DOI: https://doi.org/10.1080/10584587.2020.1728853

Murphy, K. P. (2013). Machine Learning: A Probabilistic Perspective. The mit Press

Musialek, B., Munafo, C. F., Ryan, H. & Paglione, M. (2010). Literature Survey of Trajectory Predictor Technology [online]. http://www.tc.faa.gov/its/worldpac/techrpt/tctn11-1.pdf

National Centers for Environmental Information (ncei). (2019). Resources [online]. https://www.ncei.noaa.gov/Resources

OpenSky Network. (n.d.). About Us [online]. https://openskynetwork.org/about/about-us

Pang, Y. & Liu, Y. (2020, 6-10 January). Conditional Generative Adversarial Networks (cgan) for Aircraft Trajectory Prediction Considering Weather Effects [paper]. aiaa Scitech 2020 Forum, Orlando, Florida, United States. https://doi.org/10.2514/6.2020-1853 DOI: https://doi.org/10.2514/6.2020-1853

Pham, D.-T. (2019). Machine Learning-Based Flight Trajectories Prediction and Air Traffic Conflict Resolution Advisory [thesis, Université Paris Sciences et Lettres]. https://theses.hal.science/tel-02870575

Porretta, M., Dupuy, M.-D., Schuster, W., Majumdar, A. & Ochieng, W. (2008). Performance Evaluation of a Novel 4D Trajectory Prediction Model for Civil Aircraft. The Journal of Navigation, 61(3), 393-420. https://doi.org/10.1017/S0373463308004761 DOI: https://doi.org/10.1017/S0373463308004761

Robert, C. (2014). Machine Learning, a Probabilistic Perspective. Chance, 27(2), 62-63. https://doi.org/10.1080/09332480.2014.914768 DOI: https://doi.org/10.1080/09332480.2014.914768

Roskam, J. (1998). Airplane Flight Dynamics and Automatic Flight Controls - Part ii. DARcorporation.

Russell, S. & Norving, P. (2009). Artificial Intelligence: A Modern Approach. Prentice Hall.

Schuster, W., Porretta, M. & Ochieng, W. (2012). High-Accuracy Four-Dimensional Trajectory Prediction for Civil Aircraft. The Aeronautical Journal, 116(1175), 45-66. https://doi.org/10.1017/S0001924000006618 DOI: https://doi.org/10.1017/S0001924000006618

Schuster, W. & Porretta, M. (2010, 3-7 October). High-Performance Trajectory Prediction for Civil Aircraft [paper]. 29th Digital Avionics Systems Conference, Salt Lake City, Utah, United States. https://doi.org/10.1109/DASC.2010.5655515 DOI: https://doi.org/10.1109/DASC.2010.5655515

Single European Sky atm Research (sesar). (2021). Delivering the Digital European Sky [online]. https://www.sesarju.eu/

Shi, Z. (2020). 4-D Trajectory Prediction and Its Application in Air Traffic Management [doctoral dissertation, University of Technology Sydney]. https://opus.lib.uts.edu.au/handle/10453/143917

Shi, Z., Xu, M. & Pan, Q. (2021). 4-D Flight Trajectory Prediction with Constrained lstm Network. ieee Transactions on Intelligent Transportation Systems, 22(11), 7242-7255.https://doi.org/10.1109/TITS.2020.3004807 DOI: https://doi.org/10.1109/TITS.2020.3004807

Shi, Z., Xu, M., Pan, Q., Yan, B. & Zhang, H. (2018, 8-13 July). lstm-Based Flight Trajectory Prediction [paper]. 2018 International Joint Conference on Neural Networks (ijcnn), Rio de Janeiro, Brasil. https://doi.org/10.1109/IJCNN.2018.8489734 DOI: https://doi.org/10.1109/IJCNN.2018.8489734

Spencer, K. S. (2011). Fuel Consumption Optimization using Neural Networks and Genetic Algorithms [master dissertation, Universidade Técnica de Lisboa]. https://fenix.tecnico.ulisboa.pt/downloadFile/395143171393/dissertaçao.pdf

Taherdoost, H. (2023). Machine Learning Algorithms: Features and Applications. In: Encyclopedia of Data Science and Machine Learning (P. 938-960). https://doi.org/10.4018/978-1-7998-9220-5.ch054 DOI: https://doi.org/10.4018/978-1-7998-9220-5.ch054

Takeichi, N. (2018). Adaptive Prediction of Flight Time Uncertainty for Ground-Based 4D Trajectory Management. Transportation Research Part C: Emerging Technologies, 95, 335-345. https://doi.org/10.1016/J.TRC.2018.07.028 DOI: https://doi.org/10.1016/j.trc.2018.07.028

Tang, X., Chen, P. & Zhang, Y. (2015). 4D Trajectory Estimation Based on Nominal Flight Profile Extraction and Airway Meteorological Forecast Revision. Aerospace Science and Technology, 45, 387-397. https://doi.org/10.1016/j.ast.2015.06.001 DOI: https://doi.org/10.1016/j.ast.2015.06.001

Tastambekov, K., Puechmorel, S., Delahaye, D. & Rabut, C. (2014). Aircraft Trajectory Forecasting using Local Functional Regression in Sobolev Space. Transportation Research Part C: Emerging Technologies, 39, 1-22. https://doi.org/10.1016/J.TRC.2013.11.013 DOI: https://doi.org/10.1016/j.trc.2013.11.013

Tran, P., Pham, D.-T., Schultz, M., Alam, S. & Le, T.-H. (2020). Short-Term Trajectory Prediction using Generative Machine Learning Methods [paper]. International Conference for Research in Air Transportation (icrat) 2020, Nanyang Technological University, Singapore. https://www.researchgate.net/publication/342706973

Trani, A. A., Wing-Ho, F. C., Schilling, G., Baik, H. & Seshadri, A. (2004, 20-22 September). A Neural Network Model to Estimate Aircraft Fuel Consumption [paper]. aiaa 4th Aviation Technology, Integration and Operations (atio) Forum, Chicago, Illinois, United States. https://doi.org/10.2514/6.2004-6401 DOI: https://doi.org/10.2514/6.2004-6401

Vandehzad, M. (2020). Efficient Flight Schedules with utilizing Machine Learning Prediction Algorithms [master dissertation, Malmö University]. https://www.diva-portal.org/smash/get/diva2:1480542/FULLTEXT01.pdf

VariFlight. (2022). Living on Time [online]. https://www.variflight.com/en/

Verdonk-Gallego, C. E., Gómez-Comendador, V. F., Amaro- Carmona, M. A., Arnaldo-Valdés, R. M., Sáez-Nieto, F. J. & García-Martínez, M. (2019). A Machine Learning Approach to Air Traffic Interdependency Modelling and Its Application to Trajectory Prediction. Transportation Research Part C: Emerging Technologies, 107, 356-386. https://doi.org/10.1016/J.TRC.2019.08.015 DOI: https://doi.org/10.1016/j.trc.2019.08.015

Verdonk-Gallego, C. E., Gómez-Comendador, V. F., Sáez- Nieto, F. J., Orenga-Imaz, G. & Arnaldo-Valdés, R. M.

(2018). Analysis of Air Traffic Control Operational Impact on Aircraft Vertical Profiles Supported by Machine

Learning. Transportation Research Part C: Emerging Technologies, 95, 883-903. https://doi.org/10.1016/J.TRC.2018.03.017 DOI: https://doi.org/10.1016/j.trc.2018.03.017

Wang, Z., Liang, M. & Delahaye, D. (2017). Short-Term 4D Trajectory Prediction using Machine Learning Methods [paper]. 7th sesar Innovation Days, Belgrade, Serbia. https://enac.hal.science/hal-01652041

WordClim. (2022). Global Climate and Weather Data [online]. https://www.worldclim.org/data/index.html

Wu, ZZ.-J., Tian, S. & Ma, L. (2020). A 4D Trajectory Prediction Model based on the BP Neural Network. Journal of Intelligent Systems, 29(1), 1545-1557. https://doi.org/10.1515/jisys-2019-0077 DOI: https://doi.org/10.1515/jisys-2019-0077

Xu, Z., Zeng, W., Chu, X. & Cao, P. (2021). Multi-Aircraft Trajectory Collaborative Prediction Based on Social Long Short-Term Memory Network. Aerospace, 8(4), 115-137. https://doi.org/10.3390/aerospace8040115 DOI: https://doi.org/10.3390/aerospace8040115

Yang, K., Bi, M., Liu, Y. & Zhang, Y. (2019, 27-30 July). lstm-Based Deep Learning Model for Civil Aircraft Position and Attitude Prediction Approach [paper]. 2019 Chinese Control Conference (CCC), Guangzhou, China. https://doi.org/10.23919/CHICC.2019.8865874 DOI: https://doi.org/10.23919/ChiCC.2019.8865874

Yong, T. Honggang, W., Zhili, X. & Zhongtao, H. (2012, 22-27May). ADS-B and SSR data fusion and application [paper]. 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), Zhangjiajie, China. https://doi.org/10.1109/CSAE.2012.6272769 DOI: https://doi.org/10.1109/CSAE.2012.6272769

Zeng, W., Chu, X., Xu, Z., Liu, Y. & Quan, Z. (2022). Aircraft 4D Trajectory Prediction in Civil Aviation: A Review. Aerospace, 9(1), 91-110. https://doi.org/10.3390/aerospace9020091 DOI: https://doi.org/10.3390/aerospace9020091

Zeng, W., Quan, Z., Zhao, Z., Xie, C. & Lu, X. (2020). A Deep Learning Approach for Aircraft Trajectory Prediction in Terminal Airspace. IEEE Access, 8, 151250-151266.https://doi.org/10.1109/ACCESS.2020.3016289 DOI: https://doi.org/10.1109/ACCESS.2020.3016289

Zhang, C., Zhang, X., Shi, C. & Liu, W. (2016, 8-10 July). Aircraft Trajectory Prediction Based on Genetic Programming [paper]. 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), Beijing, China. https://doi.org/10.1109/ICISCE.2016.44 DOI: https://doi.org/10.1109/ICISCE.2016.44

Zhang, H., Huang, C., Xuan, Y. & Tang, S. (2020). Real-Time Prediction of Air Combat Flight Trajectory using gru. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 42(11), 2546-2552. https://doi.org/10.3969/j.issn.1001-506X.2020.11.17

Zhang, X. & Mahadevan, S. (2020). Bayesian Neural Networks for Flight Trajectory Prediction and Safety Assessment. Decision Support Systems, 131. https://doi.org/10.1016/J.DSS.2020.113246 DOI: https://doi.org/10.1016/j.dss.2020.113246

Zhao, Z., Zeng, W., Quan, Z., Chen, M. & Yang, Z. (2019, 6-8 July). Aircraft Trajectory Prediction using Deep Long Short-Term Memory Networks [paper]. cictp 2019: Transportation in China — Connecting the World, Nanjing, China. https://doi.org/10.1061/9780784482292.012 DOI: https://doi.org/10.1061/9780784482292.012

Publicado

2024-11-22

Edição

Seção

Tecnologia e Inovação

Categorias

Como Citar

Inteligência artificial nas operações de aviação: Um estado da arte. (2024). Ciencia Y Poder Aéreo, 20(1), 89-103. https://doi.org/10.18667/cienciaypoderaereo.788