Artificial Intelligence in the Aviation Operations

A State of the Art

Authors

DOI:

https://doi.org/10.18667/cienciaypoderaereo.788

Keywords:

Aviation, artificial intelligence, trajectories

Abstract

In recent years, there has been a notable increase in the adoption of artificial intelligence, particularly due to the growing implementation of Industry 4.0 and the massive generation of data across various industrial sectors. The aviation industry has not lagged behind in this technological advancement, and multiple studies have been conducted to explore the applications of artificial intelligence in this field. The objective of this study is to carry out a comprehensive and up-to-date analysis of the current state of artificial intelligence utilization in aviation operations, with a special focus on flight planning processes, trajectory prediction, and resource optimization. Through this analysis, the aim is to delve into the latest research and advancements in this field, identifying the main methodologies, algorithms, and techniques employed. Furthermore, the study seeks to provide an integrated view of the diverse applications of artificial intelligence in the aviation industry, highlighting its potential to enhance operational efficiency, safety, and decision-making. Additionally, it aims to identify the most relevant areas for future research and development, with the goal of contributing to progress and innovation in this promising field.

Downloads

Download data is not yet available.

References

ADS-B Exchange. (2022). What is adsbx? [online]. https://www.adsbexchange.com/

Arts, E. (2021). A Novel Approach to Flight Phase Identification using Machine Learning [master dissertation, University of Hamburg]. https://elib.dlr.de/141738/1/EmyArtsMasterthesis.Pdf

Barratt, S. T., Kochenderfer, M. J. & Boyd, S. P. (2019). Learning Probabilistic Trajectory Models of Aircraft in Terminal Airspace from Position Data. ieee Transactions on Intelligent Transportation Systems, 20(9), 3536-3545. https://doi.org/10.1109/TITS.2018.2877572 DOI: https://doi.org/10.1109/TITS.2018.2877572

Besada, J. A., Garcia, J., de Miguel, G., Jimenez, F. J., Gavin, G., & Casar, J. R. (2000). Data Fusion Algorithms based on Radar and ads Measurements for atc Application. In: The Record of the ieee 2000 International Radar Conference (P.93-103). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/RADAR.2000.851812 DOI: https://doi.org/10.1109/RADAR.2000.851812

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag. https://www.springer.com/gp/book/9780387310732

Bleu-Laine, M.-H. (2021). A Methodology for the Prediction and Analysis of Precursors to Flight Adverse Events [master dissertation, Georgia Institute of Technology]. https://smartech.gatech.edu/handle/1853/64698

Bzdok, D., Altman, N. & Krzywinski, M. (2018). Points of Significance: Statistics versus Machine Learning. Nature

Methods, 15(4), 233-234. https://doi.org/10.1038/NMETH.4642 DOI: https://doi.org/10.1038/nmeth.4642

Calvo-Fernández, E. (2017). Planificación de trayecctorias 4D de aeronaves en entornos multiobjetivo [doctoral dissertation, Universidad Politécnica de Madrid]. https://oa.upm.es/47387/1/ESTHER_CALVO_FERNANDEZ.pdf

Cheung, J. C. H. (2018). Flight Planning: Node-Based Trajectory Prediction and Turbulence Avoidance. Meteorological Applications, 25(1), 78-85. https://doi.org/10.1002/MET.1671 DOI: https://doi.org/10.1002/met.1671

Choi, S., Kim, Y. J., Briceno, S. & Mavris, D. (2016, 25-29 September). Prediction of Weather-Induced Airline Delays based on Machine Learning Algorithms [paper]. 2016 ieee/aiaa 35th Digital Avionics Systems Conference (DASC), Sacramento, California, United States. https://doi.org/10.1109/DASC.2016.7777956 DOI: https://doi.org/10.1109/DASC.2016.7777956

China Meteorological Data Network (CMDC). (2022). China Meteorological Data Network. About Us. [online]. https://data.cma.cn/en/?r=article/getLeft&id=348&keyIndex=2

Courchelle, V., Soler, M., González-Arribas, D. & Delahaye, D. (2019). A Simulated Annealing Approach to 3D Strategic Aircraft Deconfliction based on En-Route Speed Changes under Wind and Temperature Uncertainties. Transportation Research Part C: Emerging Technologies, 103, 194-210. https://doi.org/10.1016/J.TRC.2019.03.024 DOI: https://doi.org/10.1016/j.trc.2019.03.024

Dalkiran, F. Y. & Toraman, M. (2021). Predicting Thrust of Aircraft using Artificial Neural Networks. Aircraft Engineering and Aerospace Technology, 93(1), 35-41. https://doi.org/10.1108/AEAT-05-2020-0089 DOI: https://doi.org/10.1108/AEAT-05-2020-0089

De Leege, A. M. P., Van Paassen, M. M. & Mulder, M. (2013, 19-22 August). A Machine Learning Approach to Trajectory Prediction [paper]. AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, Massachusetts, United States. https://doi.org/10.2514/6.2013-4782 DOI: https://doi.org/10.2514/6.2013-4782

De Oliveira, M. (2019). A Data-Driven Approach for Air Traffic Operational Performance Characterization and Prediction [thesis seminar, São José dos Campos]. https://tinyurl.com/48fvv4pa

European Centre for Medium-Range Weather Forecasts (ECMWF). (2022). About Us [online]. https://www.ecmwf.int/en/about

EUROCONTROL. (2004). User Manual for the Base of Aircraft Data (BADA) [online]. https://www.eurocontrol.int/publication/user-manual-base-aircraft-data-bada

Federal Aviation Administration (FAA). (2015). Next Generation Air Transportation System (NextGen). FAA Website, May 2010, 28-30. https://www.faa.gov/nextgen/

Finnish Meteorological Institute. (2013). Data Sets Made Available [online]. https://en.ilmatieteenlaitos.fi/opendata-sets-available

FlightAware. (2020). Rastreador de vuelos / Estado de vuelos [online]. https://flightaware.com/FlightRadar24

FlightRadar24. (2020). Live Flight Tracker - Real-Time Flight Tracker Map [online]. https://www.flightradar24.com/how-it-works

Fukuda, Y., Shirakawa, M. & Senoguchi, A. (2010). Development and Evaluation of Trajectory Prediction Model. In:

th Congress of the International Council of the Aeronautical Sciences 2010 (icas 2010) (P. 3090-3097). ICAS

Secretariat. https://www.proceedings.com/content/009/009889webtoc.pdf

Gössling, S. & Humpe, A. (2020). The Global Scale, Distribution and Growth of Aviation: Implications for Climate Change. Global Environmental Change, 65. https://doi.org/10.1016/j.gloenvcha.2020.102194 DOI: https://doi.org/10.1016/j.gloenvcha.2020.102194

Hamed, M. G. (2014). Non-Parametric High Confidence Interval Prediction: Application to Aircraft Trajectory Prediction[doctoral dissertation, Université de Toulouse]. https://tel.archives-ouvertes.fr/tel-00951327

Hamed, M. G., Gianazza, D., Serrurier, M. & Durand, N. (2013, June). Statistical Prediction of Aircraft Trajectory: Regression Methods vs. Point-Mass Model [paper]. 10th USA/Europe ATM R&D Seminar, Chicago, Illinois, United States. http://www.atmseminar.org/

Harada, A., Takeichi, N. & Oka, K. (2019, 7-11 January). An Optimal Trajectory-Based Trajectory Prediction Method for Automated Traffic Flow Management [paper]. aiaa Scitech 2019 Forum, San Diego, California, United States. https://doi.org/10.2514/6.2019-1360 DOI: https://doi.org/10.2514/6.2019-1360

Hong, S. & Lee, K. (2015). Trajectory Prediction for Vectored Area Navigation Arrivals. Journal of Aerospace Information Systems, 12(7), 490-512. https://doi.org/10.2514/1.I010245 DOI: https://doi.org/10.2514/1.I010245

Hrastovec, M. & Solina, F. (2016). Prediction of Aircraft Performances based on Data Collected by Air Traffic Control Centers. Transportation Research Part C: Emerging Technologies, 73, 167-182. https://doi.org/10.1016/j.trc.2016.10.018 DOI: https://doi.org/10.1016/j.trc.2016.10.018

Hwang, I., Hwang, J. & Tomlin, C. (2003, 11-14 August). Flight- Mode-Based Aircraft Conflict Detection using a Residual- Mean Interacting Multiple Model Algorithm [paper]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, United States. https://doi.org/10.2514/6.2003-5340 DOI: https://doi.org/10.2514/6.2003-5340

Jeon, D., Eun, Y. & Kim, H. (2015). Estimation Fusion with Radar and ads-b for Air Traffic Surveillance. International Journal of Control, Automation and Systems, 13(2), 336-345. https://doi.org/10.1007/s12555-014-0060-1 DOI: https://doi.org/10.1007/s12555-014-0060-1

Kanneganti, S. T., Chilson, P. B. & Huck, R. (2018, 23-26 July). Visualization and Prediction of Aircraft Trajectory using ads-b [paper]. naecon 2018 - ieee National Aerospace and Electronics Conference, Dayton, Ohio, United States. https://doi.org/10.1109/NAECON.2018.8556782 DOI: https://doi.org/10.1109/NAECON.2018.8556782

Kiesiläinen, J. (2020). Predicting Aircraft Arrival Times with Machine Learning [master dissertation, University of Jyväskylä]. https://jyx.jyu.fi/bitstream/handle/123456789/69366/1/URN%3ANBN%3Afi%3Ajyu-202006023624.pdf

Le Fablec, Y. & Alliot, J.-M. (1999, May). Using Neural Networks to Predict Aircraft Trajectories [paper]. International Conference on Artificial Intelligence.

Lin, Y., Yang, B., Zhang, J. & Liu, H. (2019). Approach for 4-D Trajectory Management based on hmm and Trajectory Similarity. Journal of Marine Science and Technology (Taiwan), 27(3), 246-256. https://doi.org/10.6119/JMST.201906_27(3).0007

Louridas, P. & Ebert, C. (2016). Machine Learning. ieee Software, 33(5), 110-115. https://doi.org/10.1109/MS.2016.114 DOI: https://doi.org/10.1109/MS.2016.114

Lymperopoulos, I., Lygeros, J. & Lecchini, A. (2006, 21-24 August). Model-Based Aircraft Trajectory Prediction during Takeoff [paper]. aiaa Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, United States. https://doi.org/10.2514/6.2006-6098 DOI: https://doi.org/10.2514/6.2006-6098

Ma, L. & Tian, S. (2020). A Hybrid cnn-lstm Model for Aircraft 4D Trajectory Prediction. ieee Access, 8, 134668-134680. https://doi.org/10.1109/ACCESS.2020.3010963 DOI: https://doi.org/10.1109/ACCESS.2020.3010963

McCorduck, P. & Cfe, C. (2004). Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence. crc Press. https://doi.org/10.1201/9780429258985 DOI: https://doi.org/10.1201/9780429258985

Medeiros, D. M. C., Silva, J. M. R. & Bousson, K. (2012). Rnav and rnp ar Approach Systems: The Case for Pico Island Airport. International Journal of Aviation Management (ijam), 1(3), 181. https://doi.org/10.1504/ijam.2012.045738 DOI: https://doi.org/10.1504/IJAM.2012.045738

Meteoblue. (2022). Meteoblue. Weather Close to You [online]. https://content.meteoblue.com/es

World Meteorological Organization (wmo). (2022). About the amdar Observing System [online]. https://public.wmo.int/en/programmes/global-observing-system/amdar-observing-system

Min, W., Jiawei, W., Jinhui, G., Lihua, S. & Bogong, A. (2020). Multi-Point Prediction of Aircraft Motion Trajectory based on ga-Elman-Regularization Neural Network. Integrated Ferroelectrics: An International Journal, 210(1), 116-127. https://doi.org/10.1080/10584587.2020.1728853 DOI: https://doi.org/10.1080/10584587.2020.1728853

Murphy, K. P. (2013). Machine Learning: A Probabilistic Perspective. The mit Press

Musialek, B., Munafo, C. F., Ryan, H. & Paglione, M. (2010). Literature Survey of Trajectory Predictor Technology [online]. http://www.tc.faa.gov/its/worldpac/techrpt/tctn11-1.pdf

National Centers for Environmental Information (ncei). (2019). Resources [online]. https://www.ncei.noaa.gov/Resources

OpenSky Network. (n.d.). About Us [online]. https://openskynetwork.org/about/about-us

Pang, Y. & Liu, Y. (2020, 6-10 January). Conditional Generative Adversarial Networks (cgan) for Aircraft Trajectory Prediction Considering Weather Effects [paper]. aiaa Scitech 2020 Forum, Orlando, Florida, United States. https://doi.org/10.2514/6.2020-1853 DOI: https://doi.org/10.2514/6.2020-1853

Pham, D.-T. (2019). Machine Learning-Based Flight Trajectories Prediction and Air Traffic Conflict Resolution Advisory [thesis, Université Paris Sciences et Lettres]. https://theses.hal.science/tel-02870575

Porretta, M., Dupuy, M.-D., Schuster, W., Majumdar, A. & Ochieng, W. (2008). Performance Evaluation of a Novel 4D Trajectory Prediction Model for Civil Aircraft. The Journal of Navigation, 61(3), 393-420. https://doi.org/10.1017/S0373463308004761 DOI: https://doi.org/10.1017/S0373463308004761

Robert, C. (2014). Machine Learning, a Probabilistic Perspective. Chance, 27(2), 62-63. https://doi.org/10.1080/09332480.2014.914768 DOI: https://doi.org/10.1080/09332480.2014.914768

Roskam, J. (1998). Airplane Flight Dynamics and Automatic Flight Controls - Part ii. DARcorporation.

Russell, S. & Norving, P. (2009). Artificial Intelligence: A Modern Approach. Prentice Hall.

Schuster, W., Porretta, M. & Ochieng, W. (2012). High-Accuracy Four-Dimensional Trajectory Prediction for Civil Aircraft. The Aeronautical Journal, 116(1175), 45-66. https://doi.org/10.1017/S0001924000006618 DOI: https://doi.org/10.1017/S0001924000006618

Schuster, W. & Porretta, M. (2010, 3-7 October). High-Performance Trajectory Prediction for Civil Aircraft [paper]. 29th Digital Avionics Systems Conference, Salt Lake City, Utah, United States. https://doi.org/10.1109/DASC.2010.5655515 DOI: https://doi.org/10.1109/DASC.2010.5655515

Single European Sky atm Research (sesar). (2021). Delivering the Digital European Sky [online]. https://www.sesarju.eu/

Shi, Z. (2020). 4-D Trajectory Prediction and Its Application in Air Traffic Management [doctoral dissertation, University of Technology Sydney]. https://opus.lib.uts.edu.au/handle/10453/143917

Shi, Z., Xu, M. & Pan, Q. (2021). 4-D Flight Trajectory Prediction with Constrained lstm Network. ieee Transactions on Intelligent Transportation Systems, 22(11), 7242-7255.https://doi.org/10.1109/TITS.2020.3004807 DOI: https://doi.org/10.1109/TITS.2020.3004807

Shi, Z., Xu, M., Pan, Q., Yan, B. & Zhang, H. (2018, 8-13 July). lstm-Based Flight Trajectory Prediction [paper]. 2018 International Joint Conference on Neural Networks (ijcnn), Rio de Janeiro, Brasil. https://doi.org/10.1109/IJCNN.2018.8489734 DOI: https://doi.org/10.1109/IJCNN.2018.8489734

Spencer, K. S. (2011). Fuel Consumption Optimization using Neural Networks and Genetic Algorithms [master dissertation, Universidade Técnica de Lisboa]. https://fenix.tecnico.ulisboa.pt/downloadFile/395143171393/dissertaçao.pdf

Taherdoost, H. (2023). Machine Learning Algorithms: Features and Applications. In: Encyclopedia of Data Science and Machine Learning (P. 938-960). https://doi.org/10.4018/978-1-7998-9220-5.ch054 DOI: https://doi.org/10.4018/978-1-7998-9220-5.ch054

Takeichi, N. (2018). Adaptive Prediction of Flight Time Uncertainty for Ground-Based 4D Trajectory Management. Transportation Research Part C: Emerging Technologies, 95, 335-345. https://doi.org/10.1016/J.TRC.2018.07.028 DOI: https://doi.org/10.1016/j.trc.2018.07.028

Tang, X., Chen, P. & Zhang, Y. (2015). 4D Trajectory Estimation Based on Nominal Flight Profile Extraction and Airway Meteorological Forecast Revision. Aerospace Science and Technology, 45, 387-397. https://doi.org/10.1016/j.ast.2015.06.001 DOI: https://doi.org/10.1016/j.ast.2015.06.001

Tastambekov, K., Puechmorel, S., Delahaye, D. & Rabut, C. (2014). Aircraft Trajectory Forecasting using Local Functional Regression in Sobolev Space. Transportation Research Part C: Emerging Technologies, 39, 1-22. https://doi.org/10.1016/J.TRC.2013.11.013 DOI: https://doi.org/10.1016/j.trc.2013.11.013

Tran, P., Pham, D.-T., Schultz, M., Alam, S. & Le, T.-H. (2020). Short-Term Trajectory Prediction using Generative Machine Learning Methods [paper]. International Conference for Research in Air Transportation (icrat) 2020, Nanyang Technological University, Singapore. https://www.researchgate.net/publication/342706973

Trani, A. A., Wing-Ho, F. C., Schilling, G., Baik, H. & Seshadri, A. (2004, 20-22 September). A Neural Network Model to Estimate Aircraft Fuel Consumption [paper]. aiaa 4th Aviation Technology, Integration and Operations (atio) Forum, Chicago, Illinois, United States. https://doi.org/10.2514/6.2004-6401 DOI: https://doi.org/10.2514/6.2004-6401

Vandehzad, M. (2020). Efficient Flight Schedules with utilizing Machine Learning Prediction Algorithms [master dissertation, Malmö University]. https://www.diva-portal.org/smash/get/diva2:1480542/FULLTEXT01.pdf

VariFlight. (2022). Living on Time [online]. https://www.variflight.com/en/

Verdonk-Gallego, C. E., Gómez-Comendador, V. F., Amaro- Carmona, M. A., Arnaldo-Valdés, R. M., Sáez-Nieto, F. J. & García-Martínez, M. (2019). A Machine Learning Approach to Air Traffic Interdependency Modelling and Its Application to Trajectory Prediction. Transportation Research Part C: Emerging Technologies, 107, 356-386. https://doi.org/10.1016/J.TRC.2019.08.015 DOI: https://doi.org/10.1016/j.trc.2019.08.015

Verdonk-Gallego, C. E., Gómez-Comendador, V. F., Sáez- Nieto, F. J., Orenga-Imaz, G. & Arnaldo-Valdés, R. M.

(2018). Analysis of Air Traffic Control Operational Impact on Aircraft Vertical Profiles Supported by Machine

Learning. Transportation Research Part C: Emerging Technologies, 95, 883-903. https://doi.org/10.1016/J.TRC.2018.03.017 DOI: https://doi.org/10.1016/j.trc.2018.03.017

Wang, Z., Liang, M. & Delahaye, D. (2017). Short-Term 4D Trajectory Prediction using Machine Learning Methods [paper]. 7th sesar Innovation Days, Belgrade, Serbia. https://enac.hal.science/hal-01652041

WordClim. (2022). Global Climate and Weather Data [online]. https://www.worldclim.org/data/index.html

Wu, ZZ.-J., Tian, S. & Ma, L. (2020). A 4D Trajectory Prediction Model based on the BP Neural Network. Journal of Intelligent Systems, 29(1), 1545-1557. https://doi.org/10.1515/jisys-2019-0077 DOI: https://doi.org/10.1515/jisys-2019-0077

Xu, Z., Zeng, W., Chu, X. & Cao, P. (2021). Multi-Aircraft Trajectory Collaborative Prediction Based on Social Long Short-Term Memory Network. Aerospace, 8(4), 115-137. https://doi.org/10.3390/aerospace8040115 DOI: https://doi.org/10.3390/aerospace8040115

Yang, K., Bi, M., Liu, Y. & Zhang, Y. (2019, 27-30 July). lstm-Based Deep Learning Model for Civil Aircraft Position and Attitude Prediction Approach [paper]. 2019 Chinese Control Conference (CCC), Guangzhou, China. https://doi.org/10.23919/CHICC.2019.8865874 DOI: https://doi.org/10.23919/ChiCC.2019.8865874

Yong, T. Honggang, W., Zhili, X. & Zhongtao, H. (2012, 22-27May). ADS-B and SSR data fusion and application [paper]. 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), Zhangjiajie, China. https://doi.org/10.1109/CSAE.2012.6272769 DOI: https://doi.org/10.1109/CSAE.2012.6272769

Zeng, W., Chu, X., Xu, Z., Liu, Y. & Quan, Z. (2022). Aircraft 4D Trajectory Prediction in Civil Aviation: A Review. Aerospace, 9(1), 91-110. https://doi.org/10.3390/aerospace9020091 DOI: https://doi.org/10.3390/aerospace9020091

Zeng, W., Quan, Z., Zhao, Z., Xie, C. & Lu, X. (2020). A Deep Learning Approach for Aircraft Trajectory Prediction in Terminal Airspace. IEEE Access, 8, 151250-151266.https://doi.org/10.1109/ACCESS.2020.3016289 DOI: https://doi.org/10.1109/ACCESS.2020.3016289

Zhang, C., Zhang, X., Shi, C. & Liu, W. (2016, 8-10 July). Aircraft Trajectory Prediction Based on Genetic Programming [paper]. 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), Beijing, China. https://doi.org/10.1109/ICISCE.2016.44 DOI: https://doi.org/10.1109/ICISCE.2016.44

Zhang, H., Huang, C., Xuan, Y. & Tang, S. (2020). Real-Time Prediction of Air Combat Flight Trajectory using gru. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 42(11), 2546-2552. https://doi.org/10.3969/j.issn.1001-506X.2020.11.17

Zhang, X. & Mahadevan, S. (2020). Bayesian Neural Networks for Flight Trajectory Prediction and Safety Assessment. Decision Support Systems, 131. https://doi.org/10.1016/J.DSS.2020.113246 DOI: https://doi.org/10.1016/j.dss.2020.113246

Zhao, Z., Zeng, W., Quan, Z., Chen, M. & Yang, Z. (2019, 6-8 July). Aircraft Trajectory Prediction using Deep Long Short-Term Memory Networks [paper]. cictp 2019: Transportation in China — Connecting the World, Nanjing, China. https://doi.org/10.1061/9780784482292.012 DOI: https://doi.org/10.1061/9780784482292.012

Downloads

Published

2024-11-22

Issue

Section

Technology and Innovation

Categories

How to Cite

Artificial Intelligence in the Aviation Operations: A State of the Art. (2024). Ciencia Y Poder Aéreo, 20(1), 89-103. https://doi.org/10.18667/cienciaypoderaereo.788