Inteligencia artificial en las operaciones aéreas
Un estado de arte
DOI:
https://doi.org/10.18667/cienciaypoderaereo.788Palabras clave:
Aviation, artificial intelligence, machine learning, trajectoriesResumen
En los últimos años, el uso de la inteligencia artificial (IA) ha crecido significativamente, impulsado en gran medida por la expansión de la Industria 4.0 y la creciente generación de datos en diversos sectores. La industria aeronáutica no ha sido la excepción en este avance tecnológico, y numerosos estudios han explorado las aplicaciones de la ia en este campo. Este estudio tiene como objetivo ofrecer un análisis exhaustivo y actualizado sobre el uso de la ia en las operaciones aéreas, con un enfoque particular en la planificación de vuelos, la predicción de trayectorias y la optimización de recursos. A través de este análisis, buscamos profundizar en los últimos avances y metodologías empleadas en el sector, identificando los principales algoritmos y técnicas utilizados. Además, el estudio proporciona una visión integral de las aplicaciones de la ia en la aviación, destacando su potencial para mejorar la eficiencia operativa, la seguridad y la toma de decisiones. Finalmente, esperamos identificar las áreas de investigación y desarrollo más prometedoras para contribuir al progreso e innovación en este campo en constante evolución.
Descargas
Referencias
ADS-B Exchange. (2022). What is adsbx? [online]. https://www.adsbexchange.com/
Arts, E. (2021). A Novel Approach to Flight Phase Identification using Machine Learning [master dissertation, University of Hamburg]. https://elib.dlr.de/141738/1/EmyArtsMasterthesis.Pdf
Barratt, S. T., Kochenderfer, M. J. & Boyd, S. P. (2019). Learning Probabilistic Trajectory Models of Aircraft in Terminal Airspace from Position Data. ieee Transactions on Intelligent Transportation Systems, 20(9), 3536-3545. https://doi.org/10.1109/TITS.2018.2877572 DOI: https://doi.org/10.1109/TITS.2018.2877572
Besada, J. A., Garcia, J., de Miguel, G., Jimenez, F. J., Gavin, G., & Casar, J. R. (2000). Data Fusion Algorithms based on Radar and ads Measurements for atc Application. In: The Record of the ieee 2000 International Radar Conference (P.93-103). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/RADAR.2000.851812 DOI: https://doi.org/10.1109/RADAR.2000.851812
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag. https://www.springer.com/gp/book/9780387310732
Bleu-Laine, M.-H. (2021). A Methodology for the Prediction and Analysis of Precursors to Flight Adverse Events [master dissertation, Georgia Institute of Technology]. https://smartech.gatech.edu/handle/1853/64698
Bzdok, D., Altman, N. & Krzywinski, M. (2018). Points of Significance: Statistics versus Machine Learning. Nature
Methods, 15(4), 233-234. https://doi.org/10.1038/NMETH.4642 DOI: https://doi.org/10.1038/nmeth.4642
Calvo-Fernández, E. (2017). Planificación de trayecctorias 4D de aeronaves en entornos multiobjetivo [doctoral dissertation, Universidad Politécnica de Madrid]. https://oa.upm.es/47387/1/ESTHER_CALVO_FERNANDEZ.pdf
Cheung, J. C. H. (2018). Flight Planning: Node-Based Trajectory Prediction and Turbulence Avoidance. Meteorological Applications, 25(1), 78-85. https://doi.org/10.1002/MET.1671 DOI: https://doi.org/10.1002/met.1671
Choi, S., Kim, Y. J., Briceno, S. & Mavris, D. (2016, 25-29 September). Prediction of Weather-Induced Airline Delays based on Machine Learning Algorithms [paper]. 2016 ieee/aiaa 35th Digital Avionics Systems Conference (DASC), Sacramento, California, United States. https://doi.org/10.1109/DASC.2016.7777956 DOI: https://doi.org/10.1109/DASC.2016.7777956
China Meteorological Data Network (CMDC). (2022). China Meteorological Data Network. About Us. [online]. https://data.cma.cn/en/?r=article/getLeft&id=348&keyIndex=2
Courchelle, V., Soler, M., González-Arribas, D. & Delahaye, D. (2019). A Simulated Annealing Approach to 3D Strategic Aircraft Deconfliction based on En-Route Speed Changes under Wind and Temperature Uncertainties. Transportation Research Part C: Emerging Technologies, 103, 194-210. https://doi.org/10.1016/J.TRC.2019.03.024 DOI: https://doi.org/10.1016/j.trc.2019.03.024
Dalkiran, F. Y. & Toraman, M. (2021). Predicting Thrust of Aircraft using Artificial Neural Networks. Aircraft Engineering and Aerospace Technology, 93(1), 35-41. https://doi.org/10.1108/AEAT-05-2020-0089 DOI: https://doi.org/10.1108/AEAT-05-2020-0089
De Leege, A. M. P., Van Paassen, M. M. & Mulder, M. (2013, 19-22 August). A Machine Learning Approach to Trajectory Prediction [paper]. AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, Massachusetts, United States. https://doi.org/10.2514/6.2013-4782 DOI: https://doi.org/10.2514/6.2013-4782
De Oliveira, M. (2019). A Data-Driven Approach for Air Traffic Operational Performance Characterization and Prediction [thesis seminar, São José dos Campos]. https://tinyurl.com/48fvv4pa
European Centre for Medium-Range Weather Forecasts (ECMWF). (2022). About Us [online]. https://www.ecmwf.int/en/about
EUROCONTROL. (2004). User Manual for the Base of Aircraft Data (BADA) [online]. https://www.eurocontrol.int/publication/user-manual-base-aircraft-data-bada
Federal Aviation Administration (FAA). (2015). Next Generation Air Transportation System (NextGen). FAA Website, May 2010, 28-30. https://www.faa.gov/nextgen/
Finnish Meteorological Institute. (2013). Data Sets Made Available [online]. https://en.ilmatieteenlaitos.fi/opendata-sets-available
FlightAware. (2020). Rastreador de vuelos / Estado de vuelos [online]. https://flightaware.com/FlightRadar24
FlightRadar24. (2020). Live Flight Tracker - Real-Time Flight Tracker Map [online]. https://www.flightradar24.com/how-it-works
Fukuda, Y., Shirakawa, M. & Senoguchi, A. (2010). Development and Evaluation of Trajectory Prediction Model. In:
th Congress of the International Council of the Aeronautical Sciences 2010 (icas 2010) (P. 3090-3097). ICAS
Secretariat. https://www.proceedings.com/content/009/009889webtoc.pdf
Gössling, S. & Humpe, A. (2020). The Global Scale, Distribution and Growth of Aviation: Implications for Climate Change. Global Environmental Change, 65. https://doi.org/10.1016/j.gloenvcha.2020.102194 DOI: https://doi.org/10.1016/j.gloenvcha.2020.102194
Hamed, M. G. (2014). Non-Parametric High Confidence Interval Prediction: Application to Aircraft Trajectory Prediction[doctoral dissertation, Université de Toulouse]. https://tel.archives-ouvertes.fr/tel-00951327
Hamed, M. G., Gianazza, D., Serrurier, M. & Durand, N. (2013, June). Statistical Prediction of Aircraft Trajectory: Regression Methods vs. Point-Mass Model [paper]. 10th USA/Europe ATM R&D Seminar, Chicago, Illinois, United States. http://www.atmseminar.org/
Harada, A., Takeichi, N. & Oka, K. (2019, 7-11 January). An Optimal Trajectory-Based Trajectory Prediction Method for Automated Traffic Flow Management [paper]. aiaa Scitech 2019 Forum, San Diego, California, United States. https://doi.org/10.2514/6.2019-1360 DOI: https://doi.org/10.2514/6.2019-1360
Hong, S. & Lee, K. (2015). Trajectory Prediction for Vectored Area Navigation Arrivals. Journal of Aerospace Information Systems, 12(7), 490-512. https://doi.org/10.2514/1.I010245 DOI: https://doi.org/10.2514/1.I010245
Hrastovec, M. & Solina, F. (2016). Prediction of Aircraft Performances based on Data Collected by Air Traffic Control Centers. Transportation Research Part C: Emerging Technologies, 73, 167-182. https://doi.org/10.1016/j.trc.2016.10.018 DOI: https://doi.org/10.1016/j.trc.2016.10.018
Hwang, I., Hwang, J. & Tomlin, C. (2003, 11-14 August). Flight- Mode-Based Aircraft Conflict Detection using a Residual- Mean Interacting Multiple Model Algorithm [paper]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, United States. https://doi.org/10.2514/6.2003-5340 DOI: https://doi.org/10.2514/6.2003-5340
Jeon, D., Eun, Y. & Kim, H. (2015). Estimation Fusion with Radar and ads-b for Air Traffic Surveillance. International Journal of Control, Automation and Systems, 13(2), 336-345. https://doi.org/10.1007/s12555-014-0060-1 DOI: https://doi.org/10.1007/s12555-014-0060-1
Kanneganti, S. T., Chilson, P. B. & Huck, R. (2018, 23-26 July). Visualization and Prediction of Aircraft Trajectory using ads-b [paper]. naecon 2018 - ieee National Aerospace and Electronics Conference, Dayton, Ohio, United States. https://doi.org/10.1109/NAECON.2018.8556782 DOI: https://doi.org/10.1109/NAECON.2018.8556782
Kiesiläinen, J. (2020). Predicting Aircraft Arrival Times with Machine Learning [master dissertation, University of Jyväskylä]. https://jyx.jyu.fi/bitstream/handle/123456789/69366/1/URN%3ANBN%3Afi%3Ajyu-202006023624.pdf
Le Fablec, Y. & Alliot, J.-M. (1999, May). Using Neural Networks to Predict Aircraft Trajectories [paper]. International Conference on Artificial Intelligence.
Lin, Y., Yang, B., Zhang, J. & Liu, H. (2019). Approach for 4-D Trajectory Management based on hmm and Trajectory Similarity. Journal of Marine Science and Technology (Taiwan), 27(3), 246-256. https://doi.org/10.6119/JMST.201906_27(3).0007
Louridas, P. & Ebert, C. (2016). Machine Learning. ieee Software, 33(5), 110-115. https://doi.org/10.1109/MS.2016.114 DOI: https://doi.org/10.1109/MS.2016.114
Lymperopoulos, I., Lygeros, J. & Lecchini, A. (2006, 21-24 August). Model-Based Aircraft Trajectory Prediction during Takeoff [paper]. aiaa Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, United States. https://doi.org/10.2514/6.2006-6098 DOI: https://doi.org/10.2514/6.2006-6098
Ma, L. & Tian, S. (2020). A Hybrid cnn-lstm Model for Aircraft 4D Trajectory Prediction. ieee Access, 8, 134668-134680. https://doi.org/10.1109/ACCESS.2020.3010963 DOI: https://doi.org/10.1109/ACCESS.2020.3010963
McCorduck, P. & Cfe, C. (2004). Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence. crc Press. https://doi.org/10.1201/9780429258985 DOI: https://doi.org/10.1201/9780429258985
Medeiros, D. M. C., Silva, J. M. R. & Bousson, K. (2012). Rnav and rnp ar Approach Systems: The Case for Pico Island Airport. International Journal of Aviation Management (ijam), 1(3), 181. https://doi.org/10.1504/ijam.2012.045738 DOI: https://doi.org/10.1504/IJAM.2012.045738
Meteoblue. (2022). Meteoblue. Weather Close to You [online]. https://content.meteoblue.com/es
World Meteorological Organization (wmo). (2022). About the amdar Observing System [online]. https://public.wmo.int/en/programmes/global-observing-system/amdar-observing-system
Min, W., Jiawei, W., Jinhui, G., Lihua, S. & Bogong, A. (2020). Multi-Point Prediction of Aircraft Motion Trajectory based on ga-Elman-Regularization Neural Network. Integrated Ferroelectrics: An International Journal, 210(1), 116-127. https://doi.org/10.1080/10584587.2020.1728853 DOI: https://doi.org/10.1080/10584587.2020.1728853
Murphy, K. P. (2013). Machine Learning: A Probabilistic Perspective. The mit Press
Musialek, B., Munafo, C. F., Ryan, H. & Paglione, M. (2010). Literature Survey of Trajectory Predictor Technology [online]. http://www.tc.faa.gov/its/worldpac/techrpt/tctn11-1.pdf
National Centers for Environmental Information (ncei). (2019). Resources [online]. https://www.ncei.noaa.gov/Resources
OpenSky Network. (n.d.). About Us [online]. https://openskynetwork.org/about/about-us
Pang, Y. & Liu, Y. (2020, 6-10 January). Conditional Generative Adversarial Networks (cgan) for Aircraft Trajectory Prediction Considering Weather Effects [paper]. aiaa Scitech 2020 Forum, Orlando, Florida, United States. https://doi.org/10.2514/6.2020-1853 DOI: https://doi.org/10.2514/6.2020-1853
Pham, D.-T. (2019). Machine Learning-Based Flight Trajectories Prediction and Air Traffic Conflict Resolution Advisory [thesis, Université Paris Sciences et Lettres]. https://theses.hal.science/tel-02870575
Porretta, M., Dupuy, M.-D., Schuster, W., Majumdar, A. & Ochieng, W. (2008). Performance Evaluation of a Novel 4D Trajectory Prediction Model for Civil Aircraft. The Journal of Navigation, 61(3), 393-420. https://doi.org/10.1017/S0373463308004761 DOI: https://doi.org/10.1017/S0373463308004761
Robert, C. (2014). Machine Learning, a Probabilistic Perspective. Chance, 27(2), 62-63. https://doi.org/10.1080/09332480.2014.914768 DOI: https://doi.org/10.1080/09332480.2014.914768
Roskam, J. (1998). Airplane Flight Dynamics and Automatic Flight Controls - Part ii. DARcorporation.
Russell, S. & Norving, P. (2009). Artificial Intelligence: A Modern Approach. Prentice Hall.
Schuster, W., Porretta, M. & Ochieng, W. (2012). High-Accuracy Four-Dimensional Trajectory Prediction for Civil Aircraft. The Aeronautical Journal, 116(1175), 45-66. https://doi.org/10.1017/S0001924000006618 DOI: https://doi.org/10.1017/S0001924000006618
Schuster, W. & Porretta, M. (2010, 3-7 October). High-Performance Trajectory Prediction for Civil Aircraft [paper]. 29th Digital Avionics Systems Conference, Salt Lake City, Utah, United States. https://doi.org/10.1109/DASC.2010.5655515 DOI: https://doi.org/10.1109/DASC.2010.5655515
Single European Sky atm Research (sesar). (2021). Delivering the Digital European Sky [online]. https://www.sesarju.eu/
Shi, Z. (2020). 4-D Trajectory Prediction and Its Application in Air Traffic Management [doctoral dissertation, University of Technology Sydney]. https://opus.lib.uts.edu.au/handle/10453/143917
Shi, Z., Xu, M. & Pan, Q. (2021). 4-D Flight Trajectory Prediction with Constrained lstm Network. ieee Transactions on Intelligent Transportation Systems, 22(11), 7242-7255.https://doi.org/10.1109/TITS.2020.3004807 DOI: https://doi.org/10.1109/TITS.2020.3004807
Shi, Z., Xu, M., Pan, Q., Yan, B. & Zhang, H. (2018, 8-13 July). lstm-Based Flight Trajectory Prediction [paper]. 2018 International Joint Conference on Neural Networks (ijcnn), Rio de Janeiro, Brasil. https://doi.org/10.1109/IJCNN.2018.8489734 DOI: https://doi.org/10.1109/IJCNN.2018.8489734
Spencer, K. S. (2011). Fuel Consumption Optimization using Neural Networks and Genetic Algorithms [master dissertation, Universidade Técnica de Lisboa]. https://fenix.tecnico.ulisboa.pt/downloadFile/395143171393/dissertaçao.pdf
Taherdoost, H. (2023). Machine Learning Algorithms: Features and Applications. In: Encyclopedia of Data Science and Machine Learning (P. 938-960). https://doi.org/10.4018/978-1-7998-9220-5.ch054 DOI: https://doi.org/10.4018/978-1-7998-9220-5.ch054
Takeichi, N. (2018). Adaptive Prediction of Flight Time Uncertainty for Ground-Based 4D Trajectory Management. Transportation Research Part C: Emerging Technologies, 95, 335-345. https://doi.org/10.1016/J.TRC.2018.07.028 DOI: https://doi.org/10.1016/j.trc.2018.07.028
Tang, X., Chen, P. & Zhang, Y. (2015). 4D Trajectory Estimation Based on Nominal Flight Profile Extraction and Airway Meteorological Forecast Revision. Aerospace Science and Technology, 45, 387-397. https://doi.org/10.1016/j.ast.2015.06.001 DOI: https://doi.org/10.1016/j.ast.2015.06.001
Tastambekov, K., Puechmorel, S., Delahaye, D. & Rabut, C. (2014). Aircraft Trajectory Forecasting using Local Functional Regression in Sobolev Space. Transportation Research Part C: Emerging Technologies, 39, 1-22. https://doi.org/10.1016/J.TRC.2013.11.013 DOI: https://doi.org/10.1016/j.trc.2013.11.013
Tran, P., Pham, D.-T., Schultz, M., Alam, S. & Le, T.-H. (2020). Short-Term Trajectory Prediction using Generative Machine Learning Methods [paper]. International Conference for Research in Air Transportation (icrat) 2020, Nanyang Technological University, Singapore. https://www.researchgate.net/publication/342706973
Trani, A. A., Wing-Ho, F. C., Schilling, G., Baik, H. & Seshadri, A. (2004, 20-22 September). A Neural Network Model to Estimate Aircraft Fuel Consumption [paper]. aiaa 4th Aviation Technology, Integration and Operations (atio) Forum, Chicago, Illinois, United States. https://doi.org/10.2514/6.2004-6401 DOI: https://doi.org/10.2514/6.2004-6401
Vandehzad, M. (2020). Efficient Flight Schedules with utilizing Machine Learning Prediction Algorithms [master dissertation, Malmö University]. https://www.diva-portal.org/smash/get/diva2:1480542/FULLTEXT01.pdf
VariFlight. (2022). Living on Time [online]. https://www.variflight.com/en/
Verdonk-Gallego, C. E., Gómez-Comendador, V. F., Amaro- Carmona, M. A., Arnaldo-Valdés, R. M., Sáez-Nieto, F. J. & García-Martínez, M. (2019). A Machine Learning Approach to Air Traffic Interdependency Modelling and Its Application to Trajectory Prediction. Transportation Research Part C: Emerging Technologies, 107, 356-386. https://doi.org/10.1016/J.TRC.2019.08.015 DOI: https://doi.org/10.1016/j.trc.2019.08.015
Verdonk-Gallego, C. E., Gómez-Comendador, V. F., Sáez- Nieto, F. J., Orenga-Imaz, G. & Arnaldo-Valdés, R. M.
(2018). Analysis of Air Traffic Control Operational Impact on Aircraft Vertical Profiles Supported by Machine
Learning. Transportation Research Part C: Emerging Technologies, 95, 883-903. https://doi.org/10.1016/J.TRC.2018.03.017 DOI: https://doi.org/10.1016/j.trc.2018.03.017
Wang, Z., Liang, M. & Delahaye, D. (2017). Short-Term 4D Trajectory Prediction using Machine Learning Methods [paper]. 7th sesar Innovation Days, Belgrade, Serbia. https://enac.hal.science/hal-01652041
WordClim. (2022). Global Climate and Weather Data [online]. https://www.worldclim.org/data/index.html
Wu, ZZ.-J., Tian, S. & Ma, L. (2020). A 4D Trajectory Prediction Model based on the BP Neural Network. Journal of Intelligent Systems, 29(1), 1545-1557. https://doi.org/10.1515/jisys-2019-0077 DOI: https://doi.org/10.1515/jisys-2019-0077
Xu, Z., Zeng, W., Chu, X. & Cao, P. (2021). Multi-Aircraft Trajectory Collaborative Prediction Based on Social Long Short-Term Memory Network. Aerospace, 8(4), 115-137. https://doi.org/10.3390/aerospace8040115 DOI: https://doi.org/10.3390/aerospace8040115
Yang, K., Bi, M., Liu, Y. & Zhang, Y. (2019, 27-30 July). lstm-Based Deep Learning Model for Civil Aircraft Position and Attitude Prediction Approach [paper]. 2019 Chinese Control Conference (CCC), Guangzhou, China. https://doi.org/10.23919/CHICC.2019.8865874 DOI: https://doi.org/10.23919/ChiCC.2019.8865874
Yong, T. Honggang, W., Zhili, X. & Zhongtao, H. (2012, 22-27May). ADS-B and SSR data fusion and application [paper]. 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), Zhangjiajie, China. https://doi.org/10.1109/CSAE.2012.6272769 DOI: https://doi.org/10.1109/CSAE.2012.6272769
Zeng, W., Chu, X., Xu, Z., Liu, Y. & Quan, Z. (2022). Aircraft 4D Trajectory Prediction in Civil Aviation: A Review. Aerospace, 9(1), 91-110. https://doi.org/10.3390/aerospace9020091 DOI: https://doi.org/10.3390/aerospace9020091
Zeng, W., Quan, Z., Zhao, Z., Xie, C. & Lu, X. (2020). A Deep Learning Approach for Aircraft Trajectory Prediction in Terminal Airspace. IEEE Access, 8, 151250-151266.https://doi.org/10.1109/ACCESS.2020.3016289 DOI: https://doi.org/10.1109/ACCESS.2020.3016289
Zhang, C., Zhang, X., Shi, C. & Liu, W. (2016, 8-10 July). Aircraft Trajectory Prediction Based on Genetic Programming [paper]. 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), Beijing, China. https://doi.org/10.1109/ICISCE.2016.44 DOI: https://doi.org/10.1109/ICISCE.2016.44
Zhang, H., Huang, C., Xuan, Y. & Tang, S. (2020). Real-Time Prediction of Air Combat Flight Trajectory using gru. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 42(11), 2546-2552. https://doi.org/10.3969/j.issn.1001-506X.2020.11.17
Zhang, X. & Mahadevan, S. (2020). Bayesian Neural Networks for Flight Trajectory Prediction and Safety Assessment. Decision Support Systems, 131. https://doi.org/10.1016/J.DSS.2020.113246 DOI: https://doi.org/10.1016/j.dss.2020.113246
Zhao, Z., Zeng, W., Quan, Z., Chen, M. & Yang, Z. (2019, 6-8 July). Aircraft Trajectory Prediction using Deep Long Short-Term Memory Networks [paper]. cictp 2019: Transportation in China — Connecting the World, Nanjing, China. https://doi.org/10.1061/9780784482292.012 DOI: https://doi.org/10.1061/9780784482292.012
Descargas
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2024 Escuela de Postgrados de la Fuerza Aérea Colombiana
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Declaración de cesión de los derechos de autor a la revista
Los autores ceden la Revista los derechos de explotación (reproducción, distribución, comunicación pública y transformación) para explotar y comercializar la obra, entera o en parte, en todos los formatos y modalidades de explotación presentes o futuros, en todos los idiomas, por todo el periodo de vida de la obra y por todo el mundo.
Todos los contenidos publicados en la revista científica Ciencia y Poder Aéreo están sujetos a la licencia reconocimiento 4.0 Internacional de Creative Commons, cuyo texto completo se puede consultar en http://creativecommons.org/licenses/by/4.0/
La licencia permite a cualquier usuario descargar, imprimir, extraer, archivar, distribuir y comunicar públicamente este artículo, siempre y cuando el crédito se dé a los autores de la obra: a los autores del texto y a Ciencia y Poder Aéreo, Revista Científica de la Escuela de Postgrados de la Fuerza Aérea Colombiana. Excepto cuando se indique lo contrario, el contenido en este sitio es licenciado bajo una licencia Creative Commons Atribución 4.0 internacional.
Para usos de los contenidos no previstos en estas normas de publicación es necesario contactar directamente con el director o editor de la revista a través del correo cienciaypoderaereo@epfac.edu.
La Escuela de Postgrados de la Fuerza Aérea Colombiana y esta publicación no son responsables de los conceptos emitidos en los artículos, ni de los metadatos aportados ni de las filiaciones que los autores declaren, ya que esta es responsabilidad plena de los autores.