Detecção de tiras de ar ilegais em imagens digitais usando técnicas de inteligência artificial
DOI:
https://doi.org/10.18667/cienciaypoderaereo.758Palavras-chave:
Aprendizagem profunda, detecção de objetos, inteligência artificial, tiras de arResumo
O Equador é considerado um país de trânsito para atividades de contrabando e tráfico de drogas. Como um problema atual na fronteira norte e costeira do território nacional, são utilizadas pistas de pouso não autorizadas para essas atividades ilegais, onde substâncias controladas, dinheiro, armas, munições e explosivos são transportados.
A pesquisa será baseada no projeto e desenvolvimento de uma metodologia que utiliza técnicas de inteligência artificial para a análise e processamento de imagens obtidas em missões de reconhecimento realizadas por aeronaves da Força Aérea Equatoriana. Para o reconhecimento de pistas clandestinas, será utilizado o método de detecção de objetos baseado no aprendizado profundo yolo e técnicas de segmentação.
Downloads
Referências
Berchane, N. (2018, 16 de abril). Artificial intelligence, machine learning, and deep learning: Same context, different concepts. https://master-iesc-angers.com/artificial-intelligence-machine-learning-and-deep-learning-same-context-different-concepts/
Cedeño-Bravo, G., Marcillo-Parra, D. y Pereira, A. (2017). Drone autómata para identificación de pistas aéreas clandesti-nas. Iberian Conference on Information Systems and Technologies. https://doi.org/10.23919/CISTI.2017.7975951
Diario El Universo. (2021, 30 de septiembre). Ecuador entra en la lista de los países con más muertos en motines en cárceles. Redacción Internacional. https://www.eluniverso.com/noticias/internacional/ecuador-entra-en-la-lista-de-los-paises-con-mas-muertos-en-motines-en-carceles-nota/
Fernández Cordeiro, L. y Paredes Palacios, R. (2019). Desarrollo de dataset personalizado para entrenamiento de yolocomo sistema de detección de objetos en tiempo real, para entorno con brazo robot [tesis de máster, Univer-sitat Politècnica de València]. Repositorio institucional upv. http://hdl.handle.net/10251/115351
Gutiérrez Lancho, C. (2019). Detección de armas en vídeos mediante técnicas de Deep Learning [tesis de grado, Escuela Técnica Superior de Ingeniería Industrial, Informática y de Telecomunicación]. Repositorio institucional. https://hdl.handle.net/2454/33697
López Moreno, L. M., Moya Garzón, J. Á., Valoyes Porras, D. M. y Romero Álvarez, F. E. (2021, 21-24 de septiembre). Sistemas inteligentes autónomos para ejecutar misiones de búsqueda y reconocimiento [ponencia]. Mujeres en Ingeniería: Empoderamiento, Liderazgo y Compromiso, Universidad El Bosque.
Miranda Pérez, R., Solano Arias, J. y Méndez Porras, A. (2019). Introducción al aprendizaje automático con yolo. Te c-nología Vital, 2(6). https://revistas.ulatina.ac.cr/index.php/tecnologiavital/article/view/250
Monroy de Jesús, J., Reyes Nava, A. y Olmos, F. (2019). Clasificador de plantas medicinales por medio de deep learning. Research in Computing Science, 148(7), 65-78. https://doi.org/10.13053/rcs-148-7-5
Moreira Ramos, D. L. (2021). Aplicación de un modelo de reconocimiento de objetos utilizando yolo (you only look once). https://repositorio.upse.edu.ec/xmlui/handle/46000/5755
Núñez Sánchez-Agustino, F. J. (2016). Diseño de un sistema de reconocimiento automático de matrículas de vehículos me-diante una red neuronal convolucional [tesis de máster, Universitat Oberta de Catalunya]. Repositorio institu-cional uoc. https://openaccess.uoc.edu/browse?type=author&authority=439af5fa-aedc-4b2e-ad2c-7b790819c592
Redmon, J., Divvala, S., Girshick, R. y Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 779-788. https://doi.org/10.1109/CVPR.2016.91
Russo, C., Ramón, H., Alonso, N., Cicerchia, B., Esnaola, L. y Tessore, J. P. (2016). Tratamiento masivo de datos utilizando técnicas de machine learning [ponencia]. XVIII Workshop de Investigadores en Ciencias de la Computación WICC, pp. 131-134. http://repositorio.unnoba.edu.ar:8080/xmlui/handle/23601/107
Sánchez, D. A. y Gonzáles Díez, H. (2020). Algorithms for detection and tracking objects with deep networks for intelligent video surveillance : A review. Revista Cubana de Ciencias Informáticas, 14(3), 165-196.
Downloads
Publicado
Licença
Copyright (c) 2022 Escuela de Postgrados de la Fuerza Aérea Colombiana
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaração de cessão de direitos autorais à revista
O autor cede exclusivamente à Revista os direitos de exploração (reprodução, distribuição, comunicação pública e transformação) para explorar e comercializar a obra, no todo ou em parte, em todos os formatos e modalidades de exploração presentes ou futuros, em todas as línguas, por todo o período de vida da obra e pelo mundo inteiro.
Todo o conteúdo publicado na revista científica Ciencia y Poder Aéreo está sujeito à licença de reconhecimento internacional Creative Commons 4.0, cujo texto completo pode ser encontrado em http://creativecommons.org/licenses/by/4.0/
A licença permite que qualquer usuário baixe, imprima, extraia, arquive, distribua e comunique publicamente este artigo, desde que seja dado o devido crédito aos autores: ao(s) autor(es) do texto e a Ciencia y Poder Aéreo, Revista da Escola de Pós-Graduação da Força Aérea Colombiana. Exceto quando for indicado o contrário, o conteúdo deste site será licenciado sob uma licença Creative Commons Attribution 4.0 Internacional.
Para usos de conteúdo não previstos nestas normas de publicação é necessário entrar em contato diretamente com o diretor ou editor da revista através do e-mail cienciaypoderaereo1@gmail.com
A Escola de Pós-Graduação da Força Aérea Colombiana e esta revista não são responsáveis pelos conceitos expressos nos artigos, nem pelos metadados fornecidos ou pelas afiliações que os autores declarem, sendo assim de inteira responsabilidade dos autores.
Licença Creative Commons
Os autores concedem à revista os direitos de exploração (reprodução, distribuição, comunicação pública e transformação) para explorar e comercializar a obra, inteira ou parcialmente, em todos os formatos e modalidades de exploração presentes ou futuras, em todas as línguas, por todo o período de vida da obra e no mundo inteiro.
Todos os conteúdos publicados na revista científica Ciencia y Poder Aéreo estão sujeitos à licença de reconhecimento 4.0 4.0 Internacional de Creative Commons, cujo texto completo pode-se consultar em http://creativecommons.org/licenses/by/4.0/
A licença permite a qualquer usuário baixar, imprimir, extrair, arquivar, distribuir e comunicar publicamente um artigo, desde que seja dado crédito aos autores do trabalho: aos autores do texto e a Ciencia y Poder Aéreo, Revista Científica da Escola de Pós-Graduação da Força Aérea Colombiana. Salvo onde for indicado o contrário, o conteúdo deste site é licenciado sob uma licença Creative Commons Atribución 4.0 internacional.
Para usos de conteúdo não previstos nestas normas de publicação é necessário entrar em contato diretamente com o diretor ou editor da revista através do e-mail cienciaypoderaereo1@gmail.com
A Escola de Pós-Graduação da Força Aérea Colombiana e esta revista não são responsáveis pelos conceitos expressos nos artigos, nem pelos metadados fornecidos ou pelas afiliações que os autores declarem, sendo assim de inteira responsabilidade dos autores.