Detection of illegal airstrips in digital images using artificial intelligence techniques
DOI:
https://doi.org/10.18667/cienciaypoderaereo.758Keywords:
Deep learning, object detection, artificial intelligence, runwaysAbstract
Ecuador is considered a transit country for drug trafficking and smuggling activities; Being a current problem on the northern and coastal border of the national territory, unauthorized airstrips are used for these illegal activities where substances subject to control, money, weapons, ammunition and explosives are transported.
The research will be based on designing and developing a methodology for use through artificial intelligence techniques, for the analysis and processing of the images that will be obtained from the reconnaissance missions carried out by the Ecuadorian Air Force planes. For the recognition of clandestine tracks, the object detection method based on deep learning Yolo and segmentation techniques will be used.
Downloads
References
Berchane, N. (2018, 16 de abril). Artificial intelligence, machine learning, and deep learning: Same context, different concepts. https://master-iesc-angers.com/artificial-intelligence-machine-learning-and-deep-learning-same-context-different-concepts/
Cedeño-Bravo, G., Marcillo-Parra, D. y Pereira, A. (2017). Drone autómata para identificación de pistas aéreas clandesti-nas. Iberian Conference on Information Systems and Technologies. https://doi.org/10.23919/CISTI.2017.7975951
Diario El Universo. (2021, 30 de septiembre). Ecuador entra en la lista de los países con más muertos en motines en cárceles. Redacción Internacional. https://www.eluniverso.com/noticias/internacional/ecuador-entra-en-la-lista-de-los-paises-con-mas-muertos-en-motines-en-carceles-nota/
Fernández Cordeiro, L. y Paredes Palacios, R. (2019). Desarrollo de dataset personalizado para entrenamiento de yolocomo sistema de detección de objetos en tiempo real, para entorno con brazo robot [tesis de máster, Univer-sitat Politècnica de València]. Repositorio institucional upv. http://hdl.handle.net/10251/115351
Gutiérrez Lancho, C. (2019). Detección de armas en vídeos mediante técnicas de Deep Learning [tesis de grado, Escuela Técnica Superior de Ingeniería Industrial, Informática y de Telecomunicación]. Repositorio institucional. https://hdl.handle.net/2454/33697
López Moreno, L. M., Moya Garzón, J. Á., Valoyes Porras, D. M. y Romero Álvarez, F. E. (2021, 21-24 de septiembre). Sistemas inteligentes autónomos para ejecutar misiones de búsqueda y reconocimiento [ponencia]. Mujeres en Ingeniería: Empoderamiento, Liderazgo y Compromiso, Universidad El Bosque.
Miranda Pérez, R., Solano Arias, J. y Méndez Porras, A. (2019). Introducción al aprendizaje automático con yolo. Te c-nología Vital, 2(6). https://revistas.ulatina.ac.cr/index.php/tecnologiavital/article/view/250
Monroy de Jesús, J., Reyes Nava, A. y Olmos, F. (2019). Clasificador de plantas medicinales por medio de deep learning. Research in Computing Science, 148(7), 65-78. https://doi.org/10.13053/rcs-148-7-5
Moreira Ramos, D. L. (2021). Aplicación de un modelo de reconocimiento de objetos utilizando yolo (you only look once). https://repositorio.upse.edu.ec/xmlui/handle/46000/5755
Núñez Sánchez-Agustino, F. J. (2016). Diseño de un sistema de reconocimiento automático de matrículas de vehículos me-diante una red neuronal convolucional [tesis de máster, Universitat Oberta de Catalunya]. Repositorio institu-cional uoc. https://openaccess.uoc.edu/browse?type=author&authority=439af5fa-aedc-4b2e-ad2c-7b790819c592
Redmon, J., Divvala, S., Girshick, R. y Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 779-788. https://doi.org/10.1109/CVPR.2016.91
Russo, C., Ramón, H., Alonso, N., Cicerchia, B., Esnaola, L. y Tessore, J. P. (2016). Tratamiento masivo de datos utilizando técnicas de machine learning [ponencia]. XVIII Workshop de Investigadores en Ciencias de la Computación WICC, pp. 131-134. http://repositorio.unnoba.edu.ar:8080/xmlui/handle/23601/107
Sánchez, D. A. y Gonzáles Díez, H. (2020). Algorithms for detection and tracking objects with deep networks for intelligent video surveillance : A review. Revista Cubana de Ciencias Informáticas, 14(3), 165-196.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2022 Escuela de Postgrados de la Fuerza Aérea Colombiana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Assignment of Copyrights
Authors assign Ciencia y Poder Aéreo journal the exclusive rights (reproduction, distribution, public communication, and transformation) to exploit and commercialize their work, in whole or in part, in all the formats and modalities of present or future exploitation, in all languages, throughout the life of the work and throughout the world.
All contents published in Ciencia y Poder Aéreo journal are licensed under a Creative Commons Attribution 4.0 International License, whose complete information is available at http://creativecommons.org/licenses/by/4.0/
Under the terms of this license, users are free to download, print, extract, archive, distribute and publicly communicate the content of articles, provided that proper credit is granted to authors and Ciencia y Poder Aéreo, scientific journal of the Graduate School of the Colombian Air Force. Except when otherwise indicated, this site and its contents are licensed under a Creative Commons Attribution 4.0 International License.
For other uses not considered under this license it is required to contact the Director or the Editor of the journal at the e-mail address cienciaypoderaereo1@gmail.com.
The Graduate School of the Colombian Air Force and this publication are not responsible for the concepts expressed in the articles, including the metadata or the affiliation stated by authors. This is the full responsibility of the authors.