Avaliação computacional do compartimento de carga de uma aeronave leve, utilizando software gratuito

Autores

DOI:

https://doi.org/10.18667/cienciaypoderaereo.749

Palavras-chave:

Cálculo estrutural, fluidodinâmica computacional (CFD), elementos finitos, software livre, ultraleve

Resumo

Este documento apresenta a avaliação estrutural do corpo de uma aeronave leve categoria VLA (massa máxima de decolagem menor ou igual a 1200 kg), utilizando sofware de dinâmica de fluidos computacional (CFD) para avaliar o comportamento aerodinâmico da aeronave e o método de elementos finitos avaliar seu comportamento estrutural. Para sua avaliação estrutural, a aeronave foi dividida em cabine, corpo e superfícies de voo (asas e empenagem). Os modelos completos da aeronave foram extraídos do modelo cad elaborado com o sofware SolidWorks para cada um dos subcomponentes do cockpit, o corpo e as asas e a empenagem. Com base nos cálculos e simulações realizados, concluiu-se que a estrutura central da aeronave suporta as forças e momentos aerodinâmicos, com valores de tensão abaixo dos valores de escoamento do material e fatores de segurança entre 1,58 e 2,60. No entanto, é necessário reforçar a união da asa à fuselagem para reduzir o estresse localizado produzido nessa área. Diferentemente de outros métodos relatados na literatura que utilizam programas muito especializados e de alto custo, o procedimento de avaliação da aerodinâmica e da estrutura central de uma aeronave leve da categoria vla que foi desenvolvido neste estudo, fez uso de programas de domínio público, em cerca de 80 % processo de análise.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Héctor Enrique Jaramillo Suárez, Universidad Autónoma de Occidente, Colombia.

    Doctor en Ingeniería: Área Mecánica de Sólidos Docente e Investigador. Universidad Autónoma de Occidente Colombia. Rol del investigador: teórico, experimental, escritura Grupo de investigación: Ciencia e Ingeniería de Materiales.

  • Brian Quintero Jiménez Cuero, Centro Red Tecnológico Metalmecánico del Pacífco (CRTM), Colombia.

    Magíster en Ingeniería Investigador. Centro Red Tecnológico Metalmecánico del Pacífco (CRTM)
    Colombia. Rol del investigador: teórico, experimental, escritura Grupo de investigación: Ciencia e
    Ingeniería de Materiales 

  • Iván Orlando Ortega Cabrera, Centro Red Tecnológico Metalmecánico del Pacífco (CRTM), Colombia.

    Especialista en Energías Renovables Investigador. Centro Red Tecnológico Metalmecánico del Pacífco (CRTM) Colombia. Rol del investigador: teórico, experimental, escritura.

  • Carlos Enrique Ríos Chaparro, Centro Red Tecnológico Metalmecánico del Pacífco (CRTM), Colombia.

    Ingeniero Industrial Investigador. Centro Red Tecnológico Metalmecánico del Pacífco (CRTM) Colombia. Rol del investigador: teórico, experimental, escritura.

  • Gustavo Adolfo Zambrano Romero, Universidad del Valle, Colombia.

    Ph.D en Física Docente e Investigador. Universidad del Valle Colombia. Rol del investigador: teórico, experimental, escritura Grupo de investigación: Grupo de Películas Delgadas.

Referências

Aircraft Design: A Conceptual Approach, Sixth Edition. (n.d.). AIAA Education Series. Retrieved March 7, 2022, from https://arc.aiaa.org/doi/abs/10.2514/4.104909

Albadr, A., Hedaya, M., McCrory, J., & Holford, K. (2019). Parametric study of honeycomb composite structure using open source finite element software. https://www.researchgate.net/publication/332383984_Parametric_Study_of_Honeycomb_Composite_Structure_Using_Open_Source_Finite_Element_Software

ASM Material Data Sheet. (n.d.). Retrieved March 3, 2022, from http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=ma6061t6

Bojita, A., Avram, A., Purcar, M., Munteanu, C., & Topa, V. (2017). Thermo-mechanical simulation of the metal-semiconductor structures of power integrated circuits. 2017 International Conference on Modern Power Systems (MPS), 1–6. https://doi.org/10.1109/MPS.2017.7974450

CALCULIX: A Three-Dimensional Structural Finite Elemente Program. (n.d.). Retrieved February 16, 2021, from http://www.calculix.de/

Camara, A. B., Pennec, F., Durif, S., Robert, J.-L., & Bouchaïr, A. (2018). Fatigue life assessment of bolted connections. MATEC Web of Conferences, 165, 10009. https://doi.org/10.1051/matecconf/201816510009

Deák, P. (2018). Vertical tail FEA with a CAD/CAE based multidisciplinary process. Aircraft Engineering and Aerospace Technology, 90(4), 652–658. https://doi.org/10.1108/AEAT-11-2016-0212

Elmer FEM – open source multiphysical simulation software. (n.d.). Retrieved February 16, 2021, from http://www.elmerfem.org/blog/

Elmer—Elmer—CSC Company Site. (n.d.). Retrieved February 16, 2021, from https://www.csc.fi/web/elmer

Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., & Thies, J. (2013). Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geoscientific Model Development, 6(4), 1299–1318. https://doi.org/10.5194/gmd-6-1299-2013

Galeano Urueña, C. H., Mantilla González, J. M., Duque Daza, C. A., & Mejía de Alba, M. F. (2019). Herramientas de software con licencia pública general para el modelado por elementos finitos. https://repositorio.unal.edu.co/handle/unal/22434

Geuzaine, C. & Remacle, J. F. (2009). gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. https://gmsh.info/

General Public License «gpl». (2020). Término General Public License. Wikipedia, la enciclopedia libre. https://es.wikipedia.org/w/index.php?itle=GNU_General_Public_License&oldid=129620200

Grote, K. H. & Antonsson, E. K. (2009). Springer Handbook of Mechanical Engineering. https://link.springer.com/book/10.1007/978-3-540-30738-9

Jaramillo, H. E., & Areiza, G. (2000). Algunas generalidades sobre el modelado de secciones compuestas usando elementos finitos. Revista Scientia et Technica, Edición, 13.

Jaramillo, H. E., García, A., Gómez, L., Escobar, W., & García, J. J. (2012). Procedimiento para generar mallas de elementos finitos de la columna vertebral humana a partir de imágenes médicas. Revista el Hombre y la Máquina, 40, 79–86.

Johnson, F., Tinoco, E., & Yu, N. (2005). Thirty Years of Development and Application of CFD at Boeing Commercial Airplanes, Seattle. Computers & Fluids, 34, 1115–1151. https://doi.org/10.1016/j.compfluid.2004.06.005

Kallemeyn, N. A., Tadepalli, S. C., Shivanna, K. H., & Grosland, N. M. (2009). An interactive multiblock approach to meshing the spine. Computer Methods and Programs in Biomedicine, 95(3), 227–235. https://doi.org/10.1016/j.cmpb.2009.03.005

Kiani, M., Wang, G., Ye, Z., & Mian, H. H. (2015). Aerodynamic and Static Aeroelastic Analysis of a Transonic Wing using Hybrid Unstructured Flow Solver. https://doi.org/10.15242/iie.e1214053

Kumaresan, S., Yoganandan, N., Pintar, F. A., & Maiman, D. J. (1999). Finite element modeling of the cervical spine: Role of intervertebral disc under axial and eccentric loads. Medical Engineering & Physics, 21(10), 689–700. https://doi.org/10.1016/S1350-4533(00)00002-3

Kundu, A. K. (2010). Aircraft Design.

Menter, F. R. (1992). Influence of freestream values on k-omega turbulence model predictions. AIAA Journal, 30(6), 1657–1659. https://doi.org/10.2514/3.11115

MIMICS Financial Software. (n.d.). Retrieved February 5, 2021, from https://www.mimics.com/

Nammi, S. K., Butt, J., Mauricette, J.-L., & Shirvani, H. (2017). Numerical Analysis of Thermal Stresses around Fasteners in Composite Metal Foils. IOP Conference Series: Materials Science and Engineering, 280, 012016. https://doi.org/10.1088/1757-899X/280/1/012016

Nemchinov, S., & Khristenko, A. (2018). Stress-strain state of pneumatic flexible shaft coupling for ball mill drives. Zeszyty Naukowe. Transport / Politechnika Śląska, z. 99. https://doi.org/10.20858/sjsutst.2018.99.12

OpenFOAM. (n.d.). Retrieved September 27, 2021, from https://www.openfoam.com/

PANUKL / Software / Teaching / ADD / Strona główna—ADD. (n.d.). Retrieved March 3, 2022, from https://www.meil.pw.edu.pl/add/ADD/Teaching/Software/PANUKL

Park, C., Joh, C. Y. & Kim, Y. S. (2009). Multidisciplinary design optimization of a structurally nonlinear aircraf wing via parametric modeling. International Journal of Precision Engineering and Manufacturing, 10(2), 87–96. https://doi.org/10.1007/s12541-009-0032-1

Qiu, J., Fan, Y., Wei, H. & Zhang, P. (2021). Lightweight design of aircraf truss based on topology and size optimization. Journal of Physics: Conference Series, 1986(1), 012094. https://doi.org/10.1088/1742-6596/1986/1/012094

Roskam, J. (2017). Airplane Design Part III: Layout Design of Cockpit, Fuselage, Wing and Empennage: Cutaways and Inboard Profiles.

Růžička, P. (2018). Modeling of boundary layer and the influence on heat transfer with help of cfd. aip Conference Proceedings, 2047(1), 020021. https://doi.org/10.1063/1.5081654

Safinowski, M., Szudarek, M., Szewczyk, R. & Winiarski, W. (2017). Capabilities of an Open-Source Software, Elmer fem, in Finite Element Analysis of Fluid Flow. In R.

Szewczyk & M. Kaliczyńska (Eds.), Recent Advances in Systems, Control and Information Technology (pp. 118–126). Springer International Publishing. https://doi.org/10.1007/978-3-319-48923-0_16

Salome-Meca - Code_Aster. (2022). lgpl binary packages. https://www.code-aster.org/V2/spip.php?article303

Seo, D.-W., Kim, J.-S., & Kim, M.-I. (2017). Pre/Post processor for structural analysis simulation integration with open source solver (Calculix, Code_Aster). Journal of the Korea Academia-Industrial cooperation Society, 18(9), 425–435. https://doi.org/10.5762/KAIS.2017.18.9.425

Takala, E., Yurtesen, E., Westerholm, J., Ruokolainen, J., & Råback, P. (2016). Parallel Simulations of Inductive Components with Elmer Finite-Element Software in Cluster Environments. Electromagnetics, 36(3), 167–185. https://doi.org/10.1080/02726343.2016.1151616

Triet, N. M., Viet, N. N. & Thang, P. M. (2015). Aerodynamic Analysis of Aircraf Wing. VNU Journal of Science: Mathematics - Physics, 31(2), Article 2. https://js.vnu.edu.vn/MaP/article/view/111

Tyndyka, M. A., Barron, V., McHugh, P. E., & O’Mahoney, D. (2007). Generation of a finite element model of the thoracolumbar spine. Acta of Bioengineering and Biomechanics, 9(1), 35–46.

Wu, Z., Li, S., Liu, M., Wang, S., Yang, H. & Liang, X. (2019). Numerical research on the turbulent drag reduction mechanism of a transverse groove structure on an airfoil

blade. Engineering Applications of Computational Fluid Mechanics, 13(1), 1024–1035. https://doi.org/10.1080/19942060.2019.1665101

Yapor Genao. (2018). Multi-Scale Analysis of Composite Materials Using Calculix and the Method of Cells: An Open Source Implementation. Master’s Theses. https://scholarworks.wmich.edu/masters_theses/3795

Ye, K., Ye, Z., Feng, Z., Pan, Y., & Wang, G. (2019). Numerical investigation on the aerothermoelastic deformation of the hypersonic wing. Acta Astronautica, 160, 76–89. https://doi.org/10.1016/j.actaastro.2019.04.028

Publicado

2022-07-12

Edição

Seção

Segurança Operacional e Logística na Indústria Aeronáutica

Como Citar

Avaliação computacional do compartimento de carga de uma aeronave leve, utilizando software gratuito. (2022). Ciencia Y Poder Aéreo, 17(2). https://doi.org/10.18667/cienciaypoderaereo.749

Dados de financiamento