Computational evaluation of the cargo compartment of a light aircraft, using free software

Authors

DOI:

https://doi.org/10.18667/cienciaypoderaereo.749

Keywords:

Structural evaluation, computational fluid dynamics, finite element method, Open-source software, light aircraft

Abstract

This paper shows the structural evaluation of a VLA category light aircraf (maximum take-off mass less than or equal to 1200 kg), using computational fluid dynamics (CDF) sofware to evaluate the aerodynamic behavior of the aircraf and the finite element method to evaluate its structural behavior. For its structural evaluation, the aircraf has been divided into cabin, body, and flight surfaces (wings and empennage). The complete models of the aircraf were extracted from the cad model made using SolidWorks® Sofware for each of the sub-components of the cockpit, body and wings, and the empennage. From the calculations and simulations performed, it was concluded that the central structure of the aircraf supports the aerodynamic forces and moments adequately, having values below the yield values of the material. However, it is necessary to reinforce the attachment of the wing to the fuselage to reduce the effort produced in that area. Unlike other methods reported in the literature that use very specialized and high-cost programs, the procedure to evaluate the aerodynamics and central structure of a vla category light aircraf that was developed in this study made use of public domain programs, at around 80 % of the analysis process.

Downloads

Download data is not yet available.

Author Biographies

  • Héctor Enrique Jaramillo Suárez, Universidad Autónoma de Occidente, Colombia.

    Doctor en Ingeniería: Área Mecánica de Sólidos Docente e Investigador. Universidad Autónoma de Occidente Colombia. Rol del investigador: teórico, experimental, escritura Grupo de investigación: Ciencia e Ingeniería de Materiales.

  • Brian Quintero Jiménez Cuero, Centro Red Tecnológico Metalmecánico del Pacífco (CRTM), Colombia.

    Magíster en Ingeniería Investigador. Centro Red Tecnológico Metalmecánico del Pacífco (CRTM)
    Colombia. Rol del investigador: teórico, experimental, escritura Grupo de investigación: Ciencia e
    Ingeniería de Materiales 

  • Iván Orlando Ortega Cabrera, Centro Red Tecnológico Metalmecánico del Pacífco (CRTM), Colombia.

    Especialista en Energías Renovables Investigador. Centro Red Tecnológico Metalmecánico del Pacífco (CRTM) Colombia. Rol del investigador: teórico, experimental, escritura.

  • Carlos Enrique Ríos Chaparro, Centro Red Tecnológico Metalmecánico del Pacífco (CRTM), Colombia.

    Ingeniero Industrial Investigador. Centro Red Tecnológico Metalmecánico del Pacífco (CRTM) Colombia. Rol del investigador: teórico, experimental, escritura.

  • Gustavo Adolfo Zambrano Romero, Universidad del Valle, Colombia.

    Ph.D en Física Docente e Investigador. Universidad del Valle Colombia. Rol del investigador: teórico, experimental, escritura Grupo de investigación: Grupo de Películas Delgadas.

References

Aircraft Design: A Conceptual Approach, Sixth Edition. (n.d.). AIAA Education Series. Retrieved March 7, 2022, from https://arc.aiaa.org/doi/abs/10.2514/4.104909

Albadr, A., Hedaya, M., McCrory, J., & Holford, K. (2019). Parametric study of honeycomb composite structure using open source finite element software. https://www.researchgate.net/publication/332383984_Parametric_Study_of_Honeycomb_Composite_Structure_Using_Open_Source_Finite_Element_Software

ASM Material Data Sheet. (n.d.). Retrieved March 3, 2022, from http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=ma6061t6

Bojita, A., Avram, A., Purcar, M., Munteanu, C., & Topa, V. (2017). Thermo-mechanical simulation of the metal-semiconductor structures of power integrated circuits. 2017 International Conference on Modern Power Systems (MPS), 1–6. https://doi.org/10.1109/MPS.2017.7974450

CALCULIX: A Three-Dimensional Structural Finite Elemente Program. (n.d.). Retrieved February 16, 2021, from http://www.calculix.de/

Camara, A. B., Pennec, F., Durif, S., Robert, J.-L., & Bouchaïr, A. (2018). Fatigue life assessment of bolted connections. MATEC Web of Conferences, 165, 10009. https://doi.org/10.1051/matecconf/201816510009

Deák, P. (2018). Vertical tail FEA with a CAD/CAE based multidisciplinary process. Aircraft Engineering and Aerospace Technology, 90(4), 652–658. https://doi.org/10.1108/AEAT-11-2016-0212

Elmer FEM – open source multiphysical simulation software. (n.d.). Retrieved February 16, 2021, from http://www.elmerfem.org/blog/

Elmer—Elmer—CSC Company Site. (n.d.). Retrieved February 16, 2021, from https://www.csc.fi/web/elmer

Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., & Thies, J. (2013). Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geoscientific Model Development, 6(4), 1299–1318. https://doi.org/10.5194/gmd-6-1299-2013

Galeano Urueña, C. H., Mantilla González, J. M., Duque Daza, C. A., & Mejía de Alba, M. F. (2019). Herramientas de software con licencia pública general para el modelado por elementos finitos. https://repositorio.unal.edu.co/handle/unal/22434

Geuzaine, C. & Remacle, J. F. (2009). gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. https://gmsh.info/

General Public License «gpl». (2020). Término General Public License. Wikipedia, la enciclopedia libre. https://es.wikipedia.org/w/index.php?itle=GNU_General_Public_License&oldid=129620200

Grote, K. H. & Antonsson, E. K. (2009). Springer Handbook of Mechanical Engineering. https://link.springer.com/book/10.1007/978-3-540-30738-9

Jaramillo, H. E., & Areiza, G. (2000). Algunas generalidades sobre el modelado de secciones compuestas usando elementos finitos. Revista Scientia et Technica, Edición, 13.

Jaramillo, H. E., García, A., Gómez, L., Escobar, W., & García, J. J. (2012). Procedimiento para generar mallas de elementos finitos de la columna vertebral humana a partir de imágenes médicas. Revista el Hombre y la Máquina, 40, 79–86.

Johnson, F., Tinoco, E., & Yu, N. (2005). Thirty Years of Development and Application of CFD at Boeing Commercial Airplanes, Seattle. Computers & Fluids, 34, 1115–1151. https://doi.org/10.1016/j.compfluid.2004.06.005

Kallemeyn, N. A., Tadepalli, S. C., Shivanna, K. H., & Grosland, N. M. (2009). An interactive multiblock approach to meshing the spine. Computer Methods and Programs in Biomedicine, 95(3), 227–235. https://doi.org/10.1016/j.cmpb.2009.03.005

Kiani, M., Wang, G., Ye, Z., & Mian, H. H. (2015). Aerodynamic and Static Aeroelastic Analysis of a Transonic Wing using Hybrid Unstructured Flow Solver. https://doi.org/10.15242/iie.e1214053

Kumaresan, S., Yoganandan, N., Pintar, F. A., & Maiman, D. J. (1999). Finite element modeling of the cervical spine: Role of intervertebral disc under axial and eccentric loads. Medical Engineering & Physics, 21(10), 689–700. https://doi.org/10.1016/S1350-4533(00)00002-3

Kundu, A. K. (2010). Aircraft Design.

Menter, F. R. (1992). Influence of freestream values on k-omega turbulence model predictions. AIAA Journal, 30(6), 1657–1659. https://doi.org/10.2514/3.11115

MIMICS Financial Software. (n.d.). Retrieved February 5, 2021, from https://www.mimics.com/

Nammi, S. K., Butt, J., Mauricette, J.-L., & Shirvani, H. (2017). Numerical Analysis of Thermal Stresses around Fasteners in Composite Metal Foils. IOP Conference Series: Materials Science and Engineering, 280, 012016. https://doi.org/10.1088/1757-899X/280/1/012016

Nemchinov, S., & Khristenko, A. (2018). Stress-strain state of pneumatic flexible shaft coupling for ball mill drives. Zeszyty Naukowe. Transport / Politechnika Śląska, z. 99. https://doi.org/10.20858/sjsutst.2018.99.12

OpenFOAM. (n.d.). Retrieved September 27, 2021, from https://www.openfoam.com/

PANUKL / Software / Teaching / ADD / Strona główna—ADD. (n.d.). Retrieved March 3, 2022, from https://www.meil.pw.edu.pl/add/ADD/Teaching/Software/PANUKL

Park, C., Joh, C. Y. & Kim, Y. S. (2009). Multidisciplinary design optimization of a structurally nonlinear aircraf wing via parametric modeling. International Journal of Precision Engineering and Manufacturing, 10(2), 87–96. https://doi.org/10.1007/s12541-009-0032-1

Qiu, J., Fan, Y., Wei, H. & Zhang, P. (2021). Lightweight design of aircraf truss based on topology and size optimization. Journal of Physics: Conference Series, 1986(1), 012094. https://doi.org/10.1088/1742-6596/1986/1/012094

Roskam, J. (2017). Airplane Design Part III: Layout Design of Cockpit, Fuselage, Wing and Empennage: Cutaways and Inboard Profiles.

Růžička, P. (2018). Modeling of boundary layer and the influence on heat transfer with help of cfd. aip Conference Proceedings, 2047(1), 020021. https://doi.org/10.1063/1.5081654

Safinowski, M., Szudarek, M., Szewczyk, R. & Winiarski, W. (2017). Capabilities of an Open-Source Software, Elmer fem, in Finite Element Analysis of Fluid Flow. In R.

Szewczyk & M. Kaliczyńska (Eds.), Recent Advances in Systems, Control and Information Technology (pp. 118–126). Springer International Publishing. https://doi.org/10.1007/978-3-319-48923-0_16

Salome-Meca - Code_Aster. (2022). lgpl binary packages. https://www.code-aster.org/V2/spip.php?article303

Seo, D.-W., Kim, J.-S., & Kim, M.-I. (2017). Pre/Post processor for structural analysis simulation integration with open source solver (Calculix, Code_Aster). Journal of the Korea Academia-Industrial cooperation Society, 18(9), 425–435. https://doi.org/10.5762/KAIS.2017.18.9.425

Takala, E., Yurtesen, E., Westerholm, J., Ruokolainen, J., & Råback, P. (2016). Parallel Simulations of Inductive Components with Elmer Finite-Element Software in Cluster Environments. Electromagnetics, 36(3), 167–185. https://doi.org/10.1080/02726343.2016.1151616

Triet, N. M., Viet, N. N. & Thang, P. M. (2015). Aerodynamic Analysis of Aircraf Wing. VNU Journal of Science: Mathematics - Physics, 31(2), Article 2. https://js.vnu.edu.vn/MaP/article/view/111

Tyndyka, M. A., Barron, V., McHugh, P. E., & O’Mahoney, D. (2007). Generation of a finite element model of the thoracolumbar spine. Acta of Bioengineering and Biomechanics, 9(1), 35–46.

Wu, Z., Li, S., Liu, M., Wang, S., Yang, H. & Liang, X. (2019). Numerical research on the turbulent drag reduction mechanism of a transverse groove structure on an airfoil

blade. Engineering Applications of Computational Fluid Mechanics, 13(1), 1024–1035. https://doi.org/10.1080/19942060.2019.1665101

Yapor Genao. (2018). Multi-Scale Analysis of Composite Materials Using Calculix and the Method of Cells: An Open Source Implementation. Master’s Theses. https://scholarworks.wmich.edu/masters_theses/3795

Ye, K., Ye, Z., Feng, Z., Pan, Y., & Wang, G. (2019). Numerical investigation on the aerothermoelastic deformation of the hypersonic wing. Acta Astronautica, 160, 76–89. https://doi.org/10.1016/j.actaastro.2019.04.028

Published

2022-07-12

Issue

Section

Operational Safety and Aviation Logistics

How to Cite

Computational evaluation of the cargo compartment of a light aircraft, using free software. (2022). Ciencia Y Poder Aéreo, 17(2). https://doi.org/10.18667/cienciaypoderaereo.749

Funding data