Sistemas de satélite para o desenvolvimento espacial da Colômbia por meio de operações de múltiplos domínios
DOI:
https://doi.org/10.18667/cienciaypoderaereo.732Palavras-chave:
desenho de constelação, cobertura regional, redes nanossatélites, agentes heterogêneosResumo
o desenvolvimento do meio rural na Colômbia e sua vinculação com o meio urbano tem sido um dos grandes desafios para garantir uma presença efetiva do Estado no território. Como parte das alternativas para promover o desenvolvimento integral das estruturas e comunidades rurais, foram propostas opções para a prestação de serviços aeroespaciais que ofereçam meios de comunicação permanentes e ferramentas de observação terrestre, assistência aos efeitos dos fenómenos climáticos, quantificação demográfica, controle de áreas e populações, determinação de rotas e vias de acesso, entre outras. A partir disso, é proposta uma metodologia para a análise, concepção, desenvolvimento, implementação e avaliação de um projeto espacial, que inclui o cálculo das condições operacionais e elementos orbitais, parâmetros de desempenho, áreas de cobertura, número de aviões e satélites e vários modelos de constelações de satélites no território nacional. Esta proposta busca identificar diferentes alternativas para o desenho e uso de equipamentos de satélite, a fim de formular planos estratégicos em nível estadual que permitam a apropriação de tecnologias aeroespaciais, oferecendo serviços comparáveis ao nível de acesso às comunicações e observação terrestre, tais como meios para o planejamento de políticas públicas destinadas a melhorar a conectividade e as capacidades tecnológicas da Colômbia.
Downloads
Referências
Allende-Alba, G., Montenbruck, O., Ardaens, J. S., Wermuth, M., & Hugentobler, U. (2017). Estimating maneuvers for precise relative orbit determination using GPS. Advances in Space Research, 59(1),45-62. https://doi.org/10.1016/j.asr.2016.08.039
Álvarez, J., & Walls, B. (2016). Constellations, clusters, and communication technology: Expanding small satellite access to space. 2016 IEEE Aerospace Conference. IEEE. https://doi.org/10.1109/AERO.2016.7500896
Álvarez-Calderón, C. E., & Corredor-Gutiérrez, C. G. (eds.). (2019). El espacio exterior: Una oportunidad infinita para Colombia. el cielo no es el límite (vol. 2). Escuela Superior de Guerra. https://doi.org/10.25062/9789585245631
Bandyopadhyay, S., Subramanian, G. P., Foust, R., Morgan, D., Chung, S.-J., & Hadaegh, F. (2015). A review of im- pending small satellite formation flying missions. 53rd AIAA Aerospace Sciences Meeting. https://doi. org/10.2514/6.2015-1623
Barakabitze, A. A., Ahmad, A., Mijumbi, R., & Hines, A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 106984 https://doi.org/10.1016/j.comnet.2019.106984
Bistafa, S. R. (2021). Revisiting Eulers orbital calculations for the comet of 1742. Advance in Historical Studies, 10(1), 73-92. https://doi.org/10.4236/ahs.2021.101007
Burleigh, S. C., De-Cola, T., Morosi, S., Jayousi, S., Cianca, E., & Fuchs, C. (2019). From connectivity to advanced internet services: A comprehensive review of small satellites communications and networks. Wireless Communications and Mobile Computing, May, 6243505. https://doi.org/10.1155/2019/6243505
CONPES. (2020). 3983. Política de desarrollo espacial: condiciones habilitantes para el impulso de la competitividad nacional. República de Colombia - Departamento Nacional de Planeación. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3983.pdf
Corredor-Gutiérrez, C. G. (2017). Diseño de un marco y hoja de ruta que permita formular la política espacial de Colombia, para promover el desarrollo tecnológico, económico y social del país. Universidad de La Sabana.
Del-Portillo, I., Cameron, B. G., & Crawley, E. F. (2019). A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronautica, 159, 123-135. https://doi.org/10.1016/j.actaastro.2019.03.040
Fugmann, M., & Klinkner, S. (2020). An automated constellation design & mission analysis tool for finding the cheapest mission architecture. SSC20-I-07 Mission Architecture, 34th Annual Small Satellite Conference. SSC. Kvell, U., Puusepp, M., Kaminski, F., Past, J. E., Palmer, K., Gro ̈nland, T. A., & Noorma, M. (2014). Nanosatelliitide orbiidi muutmine mikroelektromehaaniliste ku ̈lmgaa- si to ̃ukemootoritega. Proceedings of the Estonian Academy of Sciences, 63(2S), 279-285. https://doi.org/10.3176/proc.2014.2S.09
Lansard, E., Frayssinhes, E., & Palmade, J. L. (1998). Global design of satellite constellations: A multi-criteria performance comparison of classical walker patterns and new design patterns. Acta Astronautica, 42(9), 555-564. https://doi.org/10.1016/S0094-5765(98)00043-5
Lo, M. W. (1999). Satellite-constellation Design. Computing in science & engineering, 28(3), 58-67. https://doi.org/10.1109/5992.743623
McDowell, J. C. (2020). The low earth orbit satellite population and impacts of the SpaceX Starlink Constellation. The Astrophysical Journal, 892(2), L36. https://doi.org/10.3847/2041-8213/ab8016
Mingqi, Y., Xurong, D., & Min, H. (2016). Design and simulation for hybrid LEO communication and navigation constellation. CGNCC 2016 - IEEE Chinese Guidance, Navigation and Control Conference. https://doi.org/10.1109/CGNCC.2016.7829041.
Prescornitoiu, B., & Morales, M. (2019). Estudio y diseño de constelaciones de nanosatélites en el marco de las comunicaciones IoT [PhD thesis, Universidad Carlos III de Madrid]. Biblioteca Universidad Carlos III de Madrid.
Qu, Z., Zhang, G., Cao, H., & Xie, J. (2017). LEO satellite constellation for Internet of Things. IEEE Access, 5(c), 18391-18401. https://doi.org/10.1109/ACCESS.2017.2735988
Rodríguez-Pirateque, G. W. (2017). Diseño π: Gestión tecnológica para el Diseño de Proyectos de Ingeniería. Escuela de Postgrados Fuerza Aérea Colombiana. https://doi.org/10.18667/9789589940686
Rodríguez-Pirateque, G. W., Cortés, G, E., & Sofrony, J. (2020). Sustainable design of low-cost modular test platforms as an entrepreneurship for space development in Colombia. 71st International Astronautical Congress (IAC), The CiberSpace Edition.
Rodríguez-Pirateque, G.-W., Sofrony Esmeral, J., Cortés García, E. D., & Rueda, K. (2020). Diseño de misión, síntesis de factores operacionales y representaciones del segmento espacial, caso FACSAT y EMFF. Ciencia yPoder Aéreo, 15(2), 143-165. https://doi.org/10.18667/cienciaypoderaereo.678
Rodríguez-Pirateque, G. W., Arzola-de-la-Peña, N., & Cortes- García, E. D. (2020). Sustainable design of a nanosatellite structure type CubeSat as a modular platform for tests. Ciencia y Poder Aéreo, 15(1), 108-134. https://doi.org/10.18667/cienciaypoderaereo.519
Roscoe, C. W., Westphal, J. J., & Mosleh, E. (2018). Over- view and GNC design of the CubeSat Proximity Operations Demonstration (CPOD) mission. Acta Astronautica, 153, 410-421. https://doi.org/10.1016/j.actaastro.2018.03.033
Rouff, C., & Truszkowski , W. A. (2001). A Process for Introduc- ing Agent Technology into Space Missions. Aerospace Conference, 2001, IEEE Proceedings, 6. https://doi.org/10.1109/AERO.2001.931295
Saeed, N., Elzanaty, A., Almorad, H., Dahrouj, H., Al-Naffouri, T. Y., & Alouini, M. S. (2020). CubeSat communications: Re- cent advances and future challenges. IEEE Communications Surveys and Tutorials, 22(3), 1839-1862. https://doi.org/10.1109/COMST.2020.2990499
Schaub, H., & Junkins, J. (2009). Analytical Mechanics of Space Systems (vol. 2). AIAA Education Series. https://doi.org/10.2514/4.867231
Schilling, K. (2017). Perspectives for miniaturized, distributed, networked cooperating systems for space exploration. Robotics and Autonomous Systems, 90, 118-124. https://doi.org/10.1016/j.robot.2016.10.007
Shahzad-Shaikh, M., Jindal, P., Mali, A., Ansari, A., & Kamble, S. (2018). Design of mems based microthruster - A study. Materials Today: Proceedings, 5(9), 20719-20726. https://doi.org/10.1016/j.matpr.2018.06.456
Soldovieri, T., & Viloria, T. (2016). El ángulo sólido y algunas de sus aplicaciones. Universidad del Zulia.
US Army. (2020). America's ARMY: Ready now, investing in the future. https://www.army.mil/e2/downloads/rv7/about/usarmy_fy19_21_accomplishments_and_investment_ plan.pdf
Ximenes, S. W., Roberts, S. L., Lee, T. S., Shin, H. S., Foing, B., & Duarte, C. (2019). LEAP2 and LCATS industry clusters: A framework for lunar site technology development using global, space-STEM education and global space-industry development networks. Acta Astronautica, 157, 61-72. https://doi.org/10.1016/j.actaastro.2018.08.006
Yoon, Z., Frese, W., Bukmaier, A., & Brieß, K. (2014). System de- sign of an S-band network of distributed nanosatellites. CEAS Space Journal, 6(1), 61-71. https://doi.org/10.1007/s12567-013-0058-1
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2021 Escuela de Postgrados de la Fuerza Aérea Colombiana
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaração de cessão de direitos autorais à revista
O autor cede exclusivamente à Revista os direitos de exploração (reprodução, distribuição, comunicação pública e transformação) para explorar e comercializar a obra, no todo ou em parte, em todos os formatos e modalidades de exploração presentes ou futuros, em todas as línguas, por todo o período de vida da obra e pelo mundo inteiro.
Todo o conteúdo publicado na revista científica Ciencia y Poder Aéreo está sujeito à licença de reconhecimento internacional Creative Commons 4.0, cujo texto completo pode ser encontrado em http://creativecommons.org/licenses/by/4.0/
A licença permite que qualquer usuário baixe, imprima, extraia, arquive, distribua e comunique publicamente este artigo, desde que seja dado o devido crédito aos autores: ao(s) autor(es) do texto e a Ciencia y Poder Aéreo, Revista da Escola de Pós-Graduação da Força Aérea Colombiana. Exceto quando for indicado o contrário, o conteúdo deste site será licenciado sob uma licença Creative Commons Attribution 4.0 Internacional.
Para usos de conteúdo não previstos nestas normas de publicação é necessário entrar em contato diretamente com o diretor ou editor da revista através do e-mail cienciaypoderaereo1@gmail.com
A Escola de Pós-Graduação da Força Aérea Colombiana e esta revista não são responsáveis pelos conceitos expressos nos artigos, nem pelos metadados fornecidos ou pelas afiliações que os autores declarem, sendo assim de inteira responsabilidade dos autores.
Licença Creative Commons
Os autores concedem à revista os direitos de exploração (reprodução, distribuição, comunicação pública e transformação) para explorar e comercializar a obra, inteira ou parcialmente, em todos os formatos e modalidades de exploração presentes ou futuras, em todas as línguas, por todo o período de vida da obra e no mundo inteiro.
Todos os conteúdos publicados na revista científica Ciencia y Poder Aéreo estão sujeitos à licença de reconhecimento 4.0 4.0 Internacional de Creative Commons, cujo texto completo pode-se consultar em http://creativecommons.org/licenses/by/4.0/
A licença permite a qualquer usuário baixar, imprimir, extrair, arquivar, distribuir e comunicar publicamente um artigo, desde que seja dado crédito aos autores do trabalho: aos autores do texto e a Ciencia y Poder Aéreo, Revista Científica da Escola de Pós-Graduação da Força Aérea Colombiana. Salvo onde for indicado o contrário, o conteúdo deste site é licenciado sob uma licença Creative Commons Atribución 4.0 internacional.
Para usos de conteúdo não previstos nestas normas de publicação é necessário entrar em contato diretamente com o diretor ou editor da revista através do e-mail cienciaypoderaereo1@gmail.com
A Escola de Pós-Graduação da Força Aérea Colombiana e esta revista não são responsáveis pelos conceitos expressos nos artigos, nem pelos metadados fornecidos ou pelas afiliações que os autores declarem, sendo assim de inteira responsabilidade dos autores.