Satellite Systems for Colombian Space Development with Multi-domain Operations

Authors

DOI:

https://doi.org/10.18667/cienciaypoderaereo.732

Keywords:

constellation design, regional coverage, nanosatellite networks, heterogeneous agents

Abstract

The development of regions in rural areas and their connection with urban areas in Colombian territory has been one of the great challenges for an effective presence of the state. Different alternatives have been proposed for the provision of aerospace services that offer means for a permanent communication and tools for terrestrial observation, as well as support against the effects of climate phenomena, demographic quantification, the control of areas and populations, the determination of routes and access roads, among other alternatives that enhance the comprehensive development of communities and their technological infrastructure. Based on this, we developed a support methodology for the analysis, design, development, implementation and evaluation of the presented design process, which includes the calculation of operational conditions and orbital elements, performance parameters, coverage areas, number of planes and satellites, and different models of satellite constellations within the national territory. In order to provide different alternatives for the design and use of satellite equipment with useful information for the structuring of State-level strategic plans that allow the appropriation of aerospace technologies and provide services comparable to the level of access to communications and ground observation, as the means for planning public policies aimed at enhancing connectivity and technological capabilities in Colombia.

Downloads

Download data is not yet available.

Author Biographies

  • Germán Wedge Rodríguez Pirateque, National University of Colombia, Colombia.

    MSc in Mechanical and Mechatronics Engineering. PhD student. Grupo de plataformas robóticas UN-ROBOT Author's role: intellectual, experimental and writing of the paper.

  • Julián Camilo Páez Piñeros, National University of Colombia, Colombia.

    Mechatronics Engineer. Master's degree student. Grupo de plataformas robóticas UN-ROBOT Author's role: intellectual, experimental and writing of the paper.

  • Jorge Sofrony Esmeral, National University of Colombia, Colombia.

    PhD in Control Systems. Grupo de plataformas robóticas UN-ROBOT Author's role: intellectual, experimental and writing of the paper.

References

Allende-Alba, G., Montenbruck, O., Ardaens, J. S., Wermuth, M., & Hugentobler, U. (2017). Estimating maneuvers for precise relative orbit determination using GPS. Advances in Space Research, 59(1),45-62. https://doi.org/10.1016/j.asr.2016.08.039

Álvarez, J., & Walls, B. (2016). Constellations, clusters, and communication technology: Expanding small satellite access to space. 2016 IEEE Aerospace Conference. IEEE. https://doi.org/10.1109/AERO.2016.7500896

Álvarez-Calderón, C. E., & Corredor-Gutiérrez, C. G. (eds.). (2019). El espacio exterior: Una oportunidad infinita para Colombia. el cielo no es el límite (vol. 2). Escuela Superior de Guerra. https://doi.org/10.25062/9789585245631

Bandyopadhyay, S., Subramanian, G. P., Foust, R., Morgan, D., Chung, S.-J., & Hadaegh, F. (2015). A review of im- pending small satellite formation flying missions. 53rd AIAA Aerospace Sciences Meeting. https://doi. org/10.2514/6.2015-1623

Barakabitze, A. A., Ahmad, A., Mijumbi, R., & Hines, A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 106984 https://doi.org/10.1016/j.comnet.2019.106984

Bistafa, S. R. (2021). Revisiting Eulers orbital calculations for the comet of 1742. Advance in Historical Studies, 10(1), 73-92. https://doi.org/10.4236/ahs.2021.101007

Burleigh, S. C., De-Cola, T., Morosi, S., Jayousi, S., Cianca, E., & Fuchs, C. (2019). From connectivity to advanced internet services: A comprehensive review of small satellites communications and networks. Wireless Communications and Mobile Computing, May, 6243505. https://doi.org/10.1155/2019/6243505

CONPES. (2020). 3983. Política de desarrollo espacial: condiciones habilitantes para el impulso de la competitividad nacional. República de Colombia - Departamento Nacional de Planeación. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3983.pdf

Corredor-Gutiérrez, C. G. (2017). Diseño de un marco y hoja de ruta que permita formular la política espacial de Colombia, para promover el desarrollo tecnológico, económico y social del país. Universidad de La Sabana.

Del-Portillo, I., Cameron, B. G., & Crawley, E. F. (2019). A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronautica, 159, 123-135. https://doi.org/10.1016/j.actaastro.2019.03.040

Fugmann, M., & Klinkner, S. (2020). An automated constellation design & mission analysis tool for finding the cheapest mission architecture. SSC20-I-07 Mission Architecture, 34th Annual Small Satellite Conference. SSC. Kvell, U., Puusepp, M., Kaminski, F., Past, J. E., Palmer, K., Gro ̈nland, T. A., & Noorma, M. (2014). Nanosatelliitide orbiidi muutmine mikroelektromehaaniliste ku ̈lmgaa- si to ̃ukemootoritega. Proceedings of the Estonian Academy of Sciences, 63(2S), 279-285. https://doi.org/10.3176/proc.2014.2S.09

Lansard, E., Frayssinhes, E., & Palmade, J. L. (1998). Global design of satellite constellations: A multi-criteria performance comparison of classical walker patterns and new design patterns. Acta Astronautica, 42(9), 555-564. https://doi.org/10.1016/S0094-5765(98)00043-5

Lo, M. W. (1999). Satellite-constellation Design. Computing in science & engineering, 28(3), 58-67. https://doi.org/10.1109/5992.743623

McDowell, J. C. (2020). The low earth orbit satellite population and impacts of the SpaceX Starlink Constellation. The Astrophysical Journal, 892(2), L36. https://doi.org/10.3847/2041-8213/ab8016

Mingqi, Y., Xurong, D., & Min, H. (2016). Design and simulation for hybrid LEO communication and navigation constellation. CGNCC 2016 - IEEE Chinese Guidance, Navigation and Control Conference. https://doi.org/10.1109/CGNCC.2016.7829041.

Prescornitoiu, B., & Morales, M. (2019). Estudio y diseño de constelaciones de nanosatélites en el marco de las comunicaciones IoT [PhD thesis, Universidad Carlos III de Madrid]. Biblioteca Universidad Carlos III de Madrid.

Qu, Z., Zhang, G., Cao, H., & Xie, J. (2017). LEO satellite constellation for Internet of Things. IEEE Access, 5(c), 18391-18401. https://doi.org/10.1109/ACCESS.2017.2735988

Rodríguez-Pirateque, G. W. (2017). Diseño π: Gestión tecnológica para el Diseño de Proyectos de Ingeniería. Escuela de Postgrados Fuerza Aérea Colombiana. https://doi.org/10.18667/9789589940686

Rodríguez-Pirateque, G. W., Cortés, G, E., & Sofrony, J. (2020). Sustainable design of low-cost modular test platforms as an entrepreneurship for space development in Colombia. 71st International Astronautical Congress (IAC), The CiberSpace Edition.

Rodríguez-Pirateque, G.-W., Sofrony Esmeral, J., Cortés García, E. D., & Rueda, K. (2020). Diseño de misión, síntesis de factores operacionales y representaciones del segmento espacial, caso FACSAT y EMFF. Ciencia yPoder Aéreo, 15(2), 143-165. https://doi.org/10.18667/cienciaypoderaereo.678

Rodríguez-Pirateque, G. W., Arzola-de-la-Peña, N., & Cortes- García, E. D. (2020). Sustainable design of a nanosatellite structure type CubeSat as a modular platform for tests. Ciencia y Poder Aéreo, 15(1), 108-134. https://doi.org/10.18667/cienciaypoderaereo.519

Roscoe, C. W., Westphal, J. J., & Mosleh, E. (2018). Over- view and GNC design of the CubeSat Proximity Operations Demonstration (CPOD) mission. Acta Astronautica, 153, 410-421. https://doi.org/10.1016/j.actaastro.2018.03.033

Rouff, C., & Truszkowski , W. A. (2001). A Process for Introduc- ing Agent Technology into Space Missions. Aerospace Conference, 2001, IEEE Proceedings, 6. https://doi.org/10.1109/AERO.2001.931295

Saeed, N., Elzanaty, A., Almorad, H., Dahrouj, H., Al-Naffouri, T. Y., & Alouini, M. S. (2020). CubeSat communications: Re- cent advances and future challenges. IEEE Communications Surveys and Tutorials, 22(3), 1839-1862. https://doi.org/10.1109/COMST.2020.2990499

Schaub, H., & Junkins, J. (2009). Analytical Mechanics of Space Systems (vol. 2). AIAA Education Series. https://doi.org/10.2514/4.867231

Schilling, K. (2017). Perspectives for miniaturized, distributed, networked cooperating systems for space exploration. Robotics and Autonomous Systems, 90, 118-124. https://doi.org/10.1016/j.robot.2016.10.007

Shahzad-Shaikh, M., Jindal, P., Mali, A., Ansari, A., & Kamble, S. (2018). Design of mems based microthruster - A study. Materials Today: Proceedings, 5(9), 20719-20726. https://doi.org/10.1016/j.matpr.2018.06.456

Soldovieri, T., & Viloria, T. (2016). El ángulo sólido y algunas de sus aplicaciones. Universidad del Zulia.

US Army. (2020). America's ARMY: Ready now, investing in the future. https://www.army.mil/e2/downloads/rv7/about/usarmy_fy19_21_accomplishments_and_investment_ plan.pdf

Ximenes, S. W., Roberts, S. L., Lee, T. S., Shin, H. S., Foing, B., & Duarte, C. (2019). LEAP2 and LCATS industry clusters: A framework for lunar site technology development using global, space-STEM education and global space-industry development networks. Acta Astronautica, 157, 61-72. https://doi.org/10.1016/j.actaastro.2018.08.006

Yoon, Z., Frese, W., Bukmaier, A., & Brieß, K. (2014). System de- sign of an S-band network of distributed nanosatellites. CEAS Space Journal, 6(1), 61-71. https://doi.org/10.1007/s12567-013-0058-1

Downloads

Published

2021-11-01

Issue

Section

Desarrollo Espacial - Ad Astra

How to Cite

Satellite Systems for Colombian Space Development with Multi-domain Operations. (2021). Ciencia Y Poder Aéreo, 16(2), 46-59. https://doi.org/10.18667/cienciaypoderaereo.732