Uma proposta para a aplicação de métodos ágeis no projeto conceitual de um drone

Autores

DOI:

https://doi.org/10.18667/cienciaypoderaereo.671

Palavras-chave:

Desenvolvimento de produto, projeto conceitual, drone, planejamento de projeto, Scrum

Resumo

Quando um novo produto aeroespacial é desenvolvido, é essencial avaliar o desempenho. Os drones são considerados um produto nobre com enorme potencial de impacto na indústria da aviação nos próximos anos. O projeto de um drone certificado é uma atividade complexa, que requer a interação de várias áreas do conhecimento e é normalmente considerada em fases que variam da viabilidade à produção. Este artigo propõe o uso de metodologias ágeis para o projeto de design conceitual de um drone, dado que diversos estudos mostraram o potencial de enfrentar desafios similares usando métodos semelhantes ou análogos usados no desenvolvimento de software, como metodologias ágeis. O Scrum foi o método ágil selecionado para ser adaptado ao design do drone, a fim de gerenciar melhor a complexidade do produto e as alterações do processo. Por último, é apresentada uma proposta para a aplicação desse método, mostrando as diferentes etapas do projeto.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Germán Barragán, Universidad Pontificia Bolivariana

    Profesor Asociado Facultad de Ingeniería Aeronáutica, Universidad Pontificia Bolivariana. PhD (c) Procesos avanzados de manufactura y sustenabilidad; Magister en Transporte Aereo y Aeropuertos. ITA (Brasil); Ingeniero Aeronautico.

  • Germán Urrea, Universidad Pontificia Bolivariana

    Director Facultad de Ingenieria Aeronautica - UPB, Magister en Administración de empresas e Ingeniero Aeronautico. 

  • Juliana Andrea Niño Navia, Universidad Pontificia Bolivariana

    Coordinadora Academica Facultad de Ingenieria Aeronautica - UPB. MSc en Ingenieira Mecanica y Aeronautica. Ingenieria aeronautica. 

Referências

Aftab, S., Nawaz, Z., Anwar, M., Anwer, F., Bashir, M., & Ahmad, M. (2018). Comparative Analysis of fdd and sfdd. International Journal of Computer Science and Network Security, 18(1), 63-70. http://paper.ijcsns.org/07_book/201801/20180108.pdf

Albeaino, G., Masoud, G., & Franz, B. (2019). A systematic rewiev of unmmaned aerial vehicle application areas and

thecnologies in the aec domain. Journal of information technology in construction, 24. https://itcon.org/papers/2019_20-ITcon-Albeaino.pdf

Anderson, J. D. (1999). Aircraft Performance and Design. wcb/McGraw–Hill.

Anwer, F., Aftab, S., Waheed, U., & Muhammad, S. (2017). Agile Software Development Models tdd, fdd, dsdm, and

Crystal Methods: A Survey. International Journal of Multidisciplinary Sciences and Engineering, 8(2), 1-10. https://www.researchgate.net/publication/316273992_Agile_Software_Development_Models_TDD_FDD_DSDM_and_Crystal_Methods_A_Survey

Baguley, P. (2018). Agile development and Cost of uav.

Benassi, J. L., Amaral, D. C., & Ferreira, L. (2016). Towards a conceptual framework. Journal of Operations & Production Management, 36(2), 200-219. https://doi.org/10.1108/IJOPM-11-2013-0511

Blooshi, M. A., Jafer, S., & Patel, K. (2018). Review of Formal Agile Methods as Cost-Effective Airworthiness Certification Processes. Journal of Aerospace Information Systems, 15(7), 1-14. https://doi.org/10.2514/1.I010601

Borda, J., Trabasso, L., & Pessoa, M. (2019). Agile Management in Product Development. Research-Technology Management, 62(5), 63-67. https://doi.org/10.1080/08956308.2019.1638488

Ciric, D., Bojan, L., Gracanin, D., Palcic, I., & Zivlak, N. (2018). Agile Project Management in New Product Development and Innovation Processes: Challenges and Benefits Beyond Software Domain. Conference: 2018 IEEE International Symposium on Innovation and Entrepreneurship(tems-isie), 1-19. https://doi.org/10.1109/TEMS-ISIE.2018.8478461

Conforto, E., Salum, F., Amaral, D., Silva, S., & Almeida, L. (2014). Can Agile Project Management Be Adopted by

Industries Other than Software Development? Project Management Journal, 45(3), 21-34. https://doi.org/10.1002/pmj.21410

Darrin, M., & Devereux, W. (2017). The Agile Manifesto, design thinking and systems engineering. Annual IEEE International Systems Conference (SysCon), 1-5. https://doi.org/10.1109/SYSCON.2017.7934765

Della Vecchia, P., De Marco, A., Stingo, L., & Nardone, G. (2016). The Agile Method Applied to Aircraft Design at Univeristy of Naple. 6th easn International Conference On Innovation in European Aeronautics Research.

Dickison, T., & McIntyre, R. M. (1997). A conceptual framework of teamwork measurement. En Brannick, M, Salas, T., Team Performance Assessment and Measurement: Theory, Methods, and Applications (pp. 19-43). Psychology Press.

Esposito, E., & Raffa, L. (2004). Evolution of the supply chain. 15th International Annual ipsera.

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development.

Ghimire, D., Charters, S., & Gibbs, S. (2020). Scaling Agile Software Development Approach in Government Organization in New Zealand. icsim ‘20: Proceedings of the 3rd International Conference on Software Engineering and Information Management, 100-104. https://doi.org/10.1145/3378936.3378945

Glas, M., & Seitz, A. (2012). Application of Agile Methods in Conceptual Aircraft Design. Deutsche Gesellschaft für Luftund Raumfahrt-Lilienthal-Oberth eV. https://www.dglr.de/publikationen/2012/281384.pdf

Glas, M., & Ziemer, S. (2009). Challenges for Agile Development of Large Systems in the Aviation Industry. Proceedings of the 24th acm sigplan Conference companion on Object oriented programing systems languages and aplications, 901-908.

Hassanalian, M., & Abdelkefi, A. (2017). Classifications, Applications, and Design Challenges of Drones: A Review.

Progress in Aerospace Sciences, 91, 99-131. https://doi.org/10.1016/j.paerosci.2017.04.003

Hodgkinson, D., & Johnston, R. (2018). Aviation Law and Drones: Unmanned Aircraft and the Future of Aviation. Routledge.

Huikkola, T., & Kohtamäki, M. (2020). Agile new solution development in manufacturing companies. Technology Innovation Management Review, 10(3), 16-23. https://timreview.ca/article/1333

Ivanis, D. (2009). Where Lean and Technology Meet. Boeing.com. https://www.boeing.com/news/frontiers/archive/2009/.../i_ca01.pdf

Kazenbach, J. R., & Smith, D. K. (1993). The discipline of teams. Harvard Business Review, 83(7), 111-120.

Koch, S. (2004). Agile principles and open source software development: A theoretical and empirical discussion. Lecture notes in computer science, 85-93.

Komarov, V. A., Borgest, N. M., Vislov, I. P., Vlasov, N. V., Kozlov, D. M., Korolkov, O. N., & Maynskov, V. N. (2011). Conceptual Aircraft Design. Samara State Aerospace University.

Krupa, G. P. (2019). Application of Agile Model-Based Systems Engineering in aircraft conceptual design. Aeronautical Journal, 123(1268), 1561-1601. https://doi.org/10.1017/aer.2019.53

Kupiainen, E., Mäntylä, M., & Itkonen, J. (2015). Using metrics in Agile and Lean Software Development–A systematic

literature review of industrial studies. Information and Software Technology, 62, 143 -163. https://doi.org/10.1016/j.infsof.2015.02.005

Lavallée, C. (2019). The eu Policy for Civil Drones: The Challenge of Governing Emerging Technologies. Institute for European Studies Policy Brief. https://core.ac.uk/download/pdf/200760322.pdf

Lee, J., Tan, H., Crandall, D., & Šabanović, S. (2018). Forecasting Hand Gestures for Human-Drone Interaction. hri’18: Companion of the 2018 acm/ieee International Conference on Human-Robot Interaction, 167-168. https://doi.org/10.1145/3173386.3176967

Luppicini, R., & So, A. (2016). A Technoethical Review of Commercial Drone Use in the Context of Governance, Ethics, and Privacy. Technology in Society, 46, 109-119. https://doi.org/10.1016/j.techsoc.2016.03.003

McDermott , C., & O’Connor, G. (2003). Managing radical innovation: an overview of emergent strategy issues. Journal of Product Innovation Management, 19(6), 424-438. https://doi.org/10.1111/1540-5885.1960424

Mulder, F., Verlinden, J., & Maruyama, T. (2014). Adapting Scrum Development Method for Development of Cyber-

Phisical Systems. Proceedings of tmce 2014, 19-23. https://www.researchgate.net/publication/262419522

Nawaz, Z., Aftab, S., & Anwer, F. (2017). Simplified fdd Process Model. Modern Education and Computer Science, 9(9), 53-59. https://doi.org/10.5815/ijmecs.2017.09.06

Panagiotou, P., Fotiadis-Karras, S., & Yakinthos, K. (2018). Conceptual Design of a Blended Wing Body male uav. Aerospace, Science and Technology, 73, 32-47. https://doi.org/10.1016/j.ast.2017.11.032

Panagiotou, P., Kaparos, P., Salpingidou, C., & Yaki, K. (2016). Aerodynamic design of a male uav. Aerospace Science and Technology, 50, 127-138. https://doi.org/10.1016/j.ast.2015.12.033Get

Pardessus, T. (2004). Concurrent Engineering Development and Practices for Aircraft Design at Airbus. Proceedings of the 24th icas Conference. http://icas.org/ICAS_ARCHIVE/ICAS2004/PAPERS/413.PDF

Parvez , A. M., & Toppur, B. (2019). Hybrid Agile Project Management Model for New Product Development in Aerospace. International Journal of Operations and Quantitative Management.

Raymer, D. P. (2012). Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics.

Rebentisch, E., Conforto, E. C., Schuh, G., Riesener, M., Kantelberg, J., Amaral, D. C., & Januszek, S. (2018). Agility

Factors and Their Impact on Product Development Performance. International Design Conference - Design 2018, 893-904. https://doi.org/10.21278/idc.2018.0236

Rohajawati, S., Rahayu, P., Akbar, H., Indria, S., & Sensuse, D. (2019). Implementing dsdm and oo Method to Develop Billing in Mental Hospital. Journal of Physics: Conference Series, 1566, 26-27. https://doi.org/10.1088/1742-6596/1566/1/012059

Roskam, J. (2004). Airplane Design. darcorporation.

Salvato, J., & Luplume, A. (2020). Agile Stage-Gate Management (asgm) for physical products. r and d Management. https://doi.org/10.1111/radm.12426

Schuh, G. (2012). Innovation Management—HandBook Production and Management. Springer.

Schuh, G., Dolle, C., Kantelberg, J., & Menges, A. (2018). Identification of Agile Mechanisms of Action as Basis for Agile Product Development. Procedia cirp, 70, 19-24. https://doi.org/10.1016/j.procir.2018.02.007

Schuha, G., Gartzena, T., Soucy-Bouchardb, S., & Bassea, F. (2017). Enabling Agility in Product Development through an Adaptive Engineering. Procedia cirp, 63, 342-347. https://doi.org/10.1016/j.procir.2017.03.106

Schwaber, K., & Sutherland, J. (2016). The Scrum Guide. Scrum.org. http://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf

Sohaib, O., Solanki, H., Dhaliw, N., Hussain, W., & Asif , M. (2019). Integrating design thinking into extreme programming. Journal of Ambient Intelligence and Humanized Computing, 10, 2485-2492. doi.org/10.1007/s12652-018-0932-y Srivastava, A., Bhardwaj, S., & Saraswat, S. (2017). scrum model for agile methodology. International Conference on Computing, Communication and Automation (iccca), 864-869. https://doi.org/10.1109/CCAA.2017.8229928

Stare, A. (2014). Agile Project Management in Product Development Projects. 27th ipma World Congress, 295-304.

Sutherland, J. (2013). The Scrum Handbook. Scrum Inc.

Takeuchi , H., & Nonaka, I. (1986). The New New Product Development Game. Harvard Business Review, 64(1), 137-146.

us Deparment of Defense. (2007). Unmanned Systems Roadmap 2007–2032. https://www.globalsecurity.org/intell/library/reports/2007/dod-unmanned-systems-roadmap_2007 2032.pdf

Vinodh, S., Devadasan, S. R., Maheshkumar, S., Aravindakshan, M., Arumugam, M., & Balakrishnam, K. (2010). Agile Product Development through cad and Rapid Prototyping Technologies: An Examination in a Traditionalan examination in a traditional pump-manufacturing company. International Journal Advance Manufacturing and Technology, 46, 663 - 679. https://doi.org/10.1007/s00170-009-2142-4

Publicado

2020-11-11

Edição

Seção

Tecnologia e Inovação

Como Citar

Uma proposta para a aplicação de métodos ágeis no projeto conceitual de um drone. (2020). Ciencia Y Poder Aéreo, 15(2), 110-121. https://doi.org/10.18667/cienciaypoderaereo.671