Study of the noise pollutionproduced by aircrafts overthe city of Bogota, using the ADS-B system

Authors

DOI:

https://doi.org/10.18667/cienciaypoderaereo.820

Keywords:

ADS-B, noise pollution, heat maps, public health, air traffic

Abstract

The COVID-19 pandemic had a negative impact on the commercial aviation industry, with a notable reduction in air traffic. It was projected that, by the end of 2023, air traffic would experience an annual increase of 4.4%, leading to an increase in noise pollution, posing risks to human health. In Colombia, the Civil Aviation Authority regulates aircraft noise levels and establishes standards for their reduction. Using advanced technology, data on air traffic in Bogotá were collected through an ADS-B antenna. The most significant achievement of the study was the precise identification of the areas at highest risk of noise pollution, based on existing data: Suba, Engativá, Usaquén, Fontibón, Teusaquillo, Puente Aranda, Kennedy, Bosa, and Barrios Unidos, due to their proximity to flight paths and El Dorado International Airport. This information allowed for the creation of heat maps that are essential for planning appropriate mitigation strategies. It is mainly concluded that the accelerated expansion of air traffic will significantly increase noise levels, affecting areas near the airport. It is recommended to review and adjust air traffic regulations and policies to minimize future impact.

Downloads

Download data is not yet available.

References

Aeronáutica Civil. (2016). rac 36. Estándares de ruido [en línea]. https://tinyurl.com/mrsmmzms

Aeronáutica Civil. (2018). Metodología general. Modelo de propagación de ruido [en línea]. https://tinyurl.com/45cjxmvz

Airbus, S. (2017). Global Market Forecast 2017-2036 [en línea]. https://tinyurl.com/2vtxr5s5

Ang, L. Y. L. y Cui, F. (2022). Remote Work: Aircraft Noise Implications, Prediction, and Management in the Built Environment. Applied Acoustics, 198. https://doi.org/10.1016/j.apacoust.2022.108978

Caballol, D., Raposo, Á. P., Gil-Carrillo, F. y Morales-Segura, M. (2022). Measurement of Ambient Vibration in Empty Buildings and Relation to External Noise. Applied Acoustics, 186. https://doi.org/10.1016/j.apacoust.2021.108431

Chen, T.-J., Chen, S.-S., Hsieh, P.-Y. y Chiang, H.-C. (1997). Auditory Effects of Aircraft Noise on People Living Near an Airport. Archives of Environmental Health: An International Journal, 52(1), 45-50. https://doi.org/10.1080/00039899709603799

European Union Aviation Safety Agency (easa). (2023, agosto 15). anp Legacy Data [en línea]. https://tinyurl.com/2asyfx77

European Civil Aviation Conference (ecac). (2016). Report on Standard Method of Computing Noise Contours around Civil Airports (4.a ed.). [en línea]. https://tinyurl.com/bdhsvbts

Flores, R., Asensio, C., Gagliardi, P. y Licitra, G. (2019). Study of the Correction Factors for Aircraft Noise Façade Measurements. Applied Acoustics, 145, 399-407. https://doi.org/10.1016/j.apacoust.2018.10.007

Gagliardi, P., Teti, L. y Licitra, G. (2018). A Statistical Evaluation on Flight Operational Characteristics Affecting Aircraft Noise During Take-Off. Applied Acoustics, 134, 8-15. https://doi.org/10.1016/j.apacoust.2017.12.024

IBM. (2021, agosto 17). Conceptos básicos de ayuda de CRISP-DM [en línea]. https://tinyurl.com/mr26n4u4

Manesh, M. R. y Kaabouch, N. (2017). Analysis of Vulnerabilities, Attacks, Countermeasures and Overall Risk of the Automatic Dependent Surveillance-Broadcast (ADS-B) System. International Journal of Critical Infrastructure Protection, 19, 16-31. https://doi.org/10.1016/j.ijcip.2017.10.002

Mindomo. (s. f.). crisp-dm: La metodología para poner orden en los proyectos [en línea]. https://tinyurl.com/4xezkt7n

Mohan, S. y O’Neil, K. (2022). 2023 Aerospace and Defense Industry Outloo. Deloitte [en línea]. https://tinyurl.com/5n8ueppm

Nassur, A.-M., Léger, D., Lefèvre, M., Elbaz, M., Mietlicki, F., Nguyen, P., Ribeiro, C., Sineau, M., Laumon, B. y Evrard, A.-S. (2019). The Impact of Aircraft Noise Exposure on Objective Parameters of Sleep Quality: Results of the debats Study in France. Sleep Medicine, 54, 70-77. https://doi.org/10.1016/j.sleep.2018.10.013

Nguyen, D. D., Whitsel, E. A., Wellenius, G. A., Levy, J. I., Leibler, J. H., Grady, S. T., Stewart, J. D., Fox, M. P., Collins, J. M., Eliot, M. N., Malwitz, A., Manson, J. E. y Peters, J. L. (2023). LongTerm Aircraft Noise Exposure and Risk of Hypertension in Postmenopausal Women. Environmental Research, 218. https://doi.org/10.1016/j.envres.2022.115037

Norén-Cosgriff, K., Belyaev, I. y Løvholt, F. (2022). Building Vibration Induced by Sonic Boom-Field Test in Russia. Applied Acoustics, 185. https://doi.org/10.1016/j.apacoust.2021.108422

Rhodes, D. y Boeker, E. R. (s. f.). Recommended Method for Computing Noise Contours Around Airports — Recent Updates to icao Doc 9911 [en línea]. https://tinyurl.com/fpymk3a8

Organización de Aviación Civil Internacional (oaci). (2008). Protección del medio ambiente (5.a ed.) [en línea]. https://tinyurl.com/36dyv5wm

Urbano, S., Chaumette, E., Goupil, P. y Tourneret, J.-Y. (2018). Aircraft Vibration Detection and Diagnosis for Predictive Maintenance using a glr Test. ifac-PapersOnLine, 51(24), 1030-1036. https://doi.org/10.1016/j.ifacol.2018.09.716

Vallalta-Rueda, J. F. (s. f.). crisp-dm: una metodología para minería de datos en salud [en línea]. https://tinyurl.com/zp45scbk

Xie, H., Li, H. y Kang, J. (2014). The Characteristics and Control Strategies of Aircraft Noise in China. Applied Acoustics, 84, 47-57. https://doi.org/10.1016/j.apacoust.2014.01.011

Published

2024-07-08

Issue

Section

Operational Safety and Aviation Logistics

How to Cite

Study of the noise pollutionproduced by aircrafts overthe city of Bogota, using the ADS-B system. (2024). Ciencia Y Poder Aéreo, 19(2), 19-29. https://doi.org/10.18667/cienciaypoderaereo.820