Geospatial Collective Intelligence Approach in the appreciation phase of military planning

Authors

DOI:

https://doi.org/10.18667/cienciaypoderaereo.772

Keywords:

Collective Intelligence, Military planning, Spatial Delphi Method, Spatial Decision Support Systems

Abstract

Military planning is an important process that allows to determine the best tactic and the most efficient mean to use military power, allowing command staff to make accurate and prompt decisions. For this purpose, it is essential to have a deep knowledge of military science and operational factors such as geographic space, force, and time, which results in greater probabilities of success in the execution of military operations. This research article intends to propose a new approach in the appreciation phase of military planning based on a research project called Collective Intelligence Geospatial Planning Model, which works through an automation of the Real Time Spatial Delphi method from a web-based tool called Geospatial System of Collective Intelligence (SIGIC, acronyms in Spanish). Such automation obtains a geo-consensus that allows us to conclude if it would be relevant or adequate to provide or give support to the commander in complex geographical scenarios. Current and prospective geospatial patterns can be established through geo-consensus, which is mainly focused on the planning, organization, and use of territorial resources.

Downloads

Download data is not yet available.

References

Castillo Rosas, J. D., Jiménez Vélez, Á. F., Díez Rodríguez, J. J., Monguet Fierro, J. M. & Núñez Andrés, M. A. (2015). Geospatial System of Collective Intelligence: A technological application for the interdisciplinary study of the geographical space complexity. Collective Intelligence Conference, Michigan, EEUU https://sites.lsa.umich.edu/collectiveintelligence/wp-content/uploads/sites/176/2015/06/Rosas-CI-2015-Abstract.pdf

Di Zio, S. & Pacinelli, A. (2011). Opinion convergence in location: A spatial version of the Delphi method. Technological Forecasting and Social Change, 78(9), 1565-1578. https://doi.org/10.1016/j.techfore.2010.09.010

Emsellem, K., Liziard, S. & Scarella, F. (2012). La géoprospective: l’émergence d’un nouveau champ de recherche. Espace géographique, 41(2), 154-168. https://doi.org/10.3917/eg.412.0154

Gnatzy, T., Warth, J., von der Gracht, H. & Darkow, I. L. (2011). Validating an innovative real-time Delphi approach - A methodological comparison between real-time and conventional Delphi studies. Technological Forecasting and Social Change, 78(9), 1681-1694. https://doi.org/10.1016/j.techfore.2011.04.006

Goodchild, M. F., Yuan, M. & Cova, T. J. (2007). Towards a general theory of geographic representation in GIS. International Journal of Geographical Information Science, 21(3), 239-260. https://doi.org/10.1080/13658810600965271

Hsieh, C. H., Tzeng, F. M., Wu, C. G., Kao, J. S. & Lai, Y. Y. (2011). The comparison of online Delphi and real-time Delphi. Proceedings of PICMET ‘11: Technology Management in the Energy Smart World (PICMET), (pp. 1-3). https://ieeexplore.ieee.org/abstract/document/6017652

Houet, T. & Gourmelon, F. (2014). La géoprospective – Apport de la dimension spatiale aux démarches prospectives. Cybergeo: European Journal of Geography. [En ligne], Systèmes, Modélisation, Géostatistiques, document 667, mis en ligne le 08 février 2014, consulté le 29 mai 2023. URL : http://journals.openedition.org/cybergeo/26194 ; DOI : https://doi.org/10.4000/cybergeo.26194

Monguet, J., Ferruzca, M., Gutiérrez, A., Alatriste, Y., Martínez, C., Cordoba, C., Fernández, J., Sanguino, T. & Aguilà, J. (2010). Vector Consensus: Decision Making for Collaborative Innovation Communities [conference]. Enterprise Information Systems: International Conference, CENTERIS 2010, Viana do Castelo, Portugal. https://doi.org/10.1007/978-3-642-16419-4_22

Lévy, P. (1997). Education and training: New technologies and collective intelligence. Prospects, 27(2), 248-263. https://doi.org/10.1007/BF02737169

Painho, M., Vasilakos, A., Bacao, F. & Pedrycz, W. (2005). Exploring spatial data through computational intelligence: a joint perspective. Soft Computing, 9, 326-331. https://doi.org/10.1007/s00500-004-0411-6

Santos, M. (2006). The nature of space: technique and time, reason and emotion. Edusp, Sao Paulo, 4. https://ebin.pub/the-nature-of-space-1478013486-9781478013488.html.

Voiron-Canicio, C. (2012). L’anticipation du changement en prospective et des changements spatiaux en géoprospective. Espace géographique, 41(2), 99-110. https://doi.org/10.3917/eg.412.0099

Downloads

Published

2023-07-25

Issue

Section

Technology and Innovation

How to Cite

Geospatial Collective Intelligence Approach in the appreciation phase of military planning. (2023). Ciencia Y Poder Aéreo, 18(2), 67-74. https://doi.org/10.18667/cienciaypoderaereo.772