Theoretical approach to defining the concept of an attractant birdlife site off-airport

Authors

DOI:

https://doi.org/10.18667/cienciaypoderaereo.743

Keywords:

airport area of influence, wildlife attractant habitat, avian hazard, risk analysis system

Abstract

Most impacts between aircraft and wildlife occur within airports. However, nearly half of the impacts with damage occur outside of airports. Therefore, avian hazard programs must seriously consider off-airport areas in order to achieve complete impact risk management. But these programs have several limitations for their off-airport implementation, including the lack of a precise definition of the notion of off-airport wildlife attractant habitat, which reduces the concept to an intuitive level that hinders the optimization of the risk analysis system. The latter prevents the clear identification of areas to be assessed and subsequently managed with habitat modification. To address this problem, the concept of attractive avifauna site (AAS) (for its acronym in Spanish) is proposed, defined as the place in the airport area of influence that presents, confirmed and regularly, a flock of at least fifty flying and risky birds. Such a proposal could mean an important advance for aviation safety from an efficient management of the risk of wildlife impact outside the airport.

Downloads

Download data is not yet available.

Author Biography

  • Holman Enrique Durán-Márquez, Universidad del Atlántico

    Biólogo Universidad del Atlántico. Investigador Independiente, Colombia. Rol del investigador: teórico y escritura.

References

Allan, J. R. (2000). A protocol for bird strike risk assessment at airports. International Bird Strike Proceedings, 25(11), 29-46. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.199.3893&rep=rep1&type=pdf

Andersson, K., Davis, C. A., Blackwell, B. F. y Heinen, J. R. (2017). Wetland bird abundance and safety implications for military aircraft operations. Wildlife Society Bulletin, 41(3), 424-433. https://doi.org/10.1002/wsb.804

Arthur, J. R. (2008). General principles of the risk analysis process and its application to aquaculture. En Food and Agriculture Organization (FAO), Understanding and applying risk analysis in aquaculture (pp. 20-25). FAO. https://www.researchgate.net/profile/Marnie-Campbell/publication/257307945_Introduced_marine_species_risk_assessment_-_aquaculture/links/00b7d524dfc3c13e18000000/Introduced-marine-species-risk-assessment-aquaculture.pdf#page=21

Australian Transport Safety Bureau (ATSB). (2019). Australian aviation wildlife strike statistics 2008-2017. https://www.atsb.gov.au/publications/2018/ar-2018-035/#footnote_3

Blackwell, B. F., Seamans, T. W., Fernández-Juricic, E., Devault, T. L. y Outward, R. J. (2019). Avian responses to aircraft in an airport environment. The Journal of Wildlife Management, 83(4), 893-901. https://doi.org/10.1002/jwmg.21650

Blackwell, B. F., DeVault, T. L., Fernández-Juricic, E. y Dolbeer, R. A. (2009). Wildlife collisions with aircraft: A missing component of land-use planning for airports. Landscape and Urban Planning, 93(1), 1-9. https://doi.org/10.1016/j.landurbplan.2009.07.005

Civil Aviation Authority (CAA). (2002). Aerodrome bird control. Report prepared by the Safety Regulation Group. Civil Aviation Authority.

Caro-Caro, C. I., Torres-Mora, M. A. y Barajas-Barbosa, M. P. (2014). Ecosistemas estratégicos y disponibilidad de hábitat de la avifauna del piedemonte llanero (Colombia), como posible peligro aviar. Revista Luna Azul, (39), 25-39. https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/1758

Centro de Escritura Javeriano. (2018). Artículo de reflexión. https://www.javerianacali.edu.co/centro-escritura/recursos/articulo-de-reflexion

Coccon, F., Zucchetta, M., Bossi, G., Borrotti, M., Torricelli, P. y Franzoi, P. (2015). A land-use perspective for birdstrike risk assessment: The attraction risk index. PLoS One, 10(6). https://doi.org/10.1371/journal.pone.0128363

Corpac S.A. (2008). Programa para el control de la fauna silvestre aeropuerto Padre Aldamiz de Puerto Maldonado, Perú. http://www.corpac.gob.pe/Docs/gestion_ambiental/programa_control_fauna

Coy, H. (2016). Instructivo para la elaboración de artículos de reflexión para publicación en revistas de investigación. Corporación Unificada Nacional de Educación Superior. https://es.slideshare.net/hectorcoy/el-articulo-de-reflexin-65837295

Delfín-Alfonso, C. A., Gallina-Tessaro, S. A., y López-González, C. A. (2011). El hábitat: definición, dimensiones y escalas de evaluación para la fauna silvestre. En Gallina Tessaro, S. A., & López-González, C. A. (Eds). Manual de técnicas para el estudio de la fauna. Vol. 1 (pp. 351-377). Universidad Autónoma de Querétaro-Instituto de Ecología.

DeVault, T. L., Blackwell, B. F., Seamans, T. W., Begier, M. J., Kougher, J. D., Washburn, J. E., Miller, P. R. y Dolbeer, R. A. (2018). Estimating interspecific economic risk of bird strikes with aircraft. Wildlife Society Bulletin, 42(1), 94-101. https://doi.org/10.1002/wsb.859

DeVault, T. L., Blackwell, B. F., Seamans,T. W. y Belant, J. (2016). Identification of off-airport interspecific avian hazards to aircraft. The Journal of Wildlife Management, 80(4), 746-752. https://doi.org/10.1002/jwmg.1041

Dipilla, A. (2021). An aeroecological assessment of aircraft bird strike predictability using weather radar and citizen science [tesis de maestría, University of Science and Arts of Oklahoma]. Repositorio institucional USAO. https://hdl.handle.net/11244/329549

Dolbeer, R. A. (2011). Increasing trend of damaging bird strikes with aircraft outside the airport boundary: Implications for mitigation measures. Human-Wildlife Interactions, 5(2), 235-248. https://doi.org/10.26077/dnvb-x958

Dolbeer, R. A., Begier, M. J., Miller, P. R., Weller, J. R. y Anderson, A. L. (2021). Wildlife strikes to civil aircraft in the United States, 1990-2019 (No. DOT/FAA/TC-21/11). USDA.

El-Sayed, A. (2019). Bird strike in aviation: Statistics, analysis and management. John Wiley & Sons.

Federal Aviation Administration (FAA). (2020). Advisory Circular (AC) 150/5200-33C. Hazardous Wildlife Attractants on or Near Airports. https://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5200-33C.pdf

Fernández-Juricic, E., Brand, J., Blackwell, B. F., Seamans, T. W. y DeVault, T. L (2018). Species with greater aerial maneuverability have higher frequency of collisions with aircraft: A comparative study. Frontiers in Ecology and Evolution, 6(17). https://doi.org/10.3389/fevo.2018.00017

Gerringer, M., Lima, S. y DeVault, T. (2016). Evaluation of an avian radar system in a midwestern landscape. Wildlife Society Bulletin, 40(1), 150-159. https://doi.org/10.1002/wsb.614

Godínez, E. (2018). Aves y aeronaves: riesgos y peligros. Kindle, Amazon.

Government of Canada. (2019). Canada Bird Strike Information System (CBSIS). https://wwwapps.tc.gc.ca/Saf-Sec-Sur/2/bsis/

Hasılcı, Z. y Boğoçlu, M. (2020). Determining the effect of bird parameters on bird strikes to commercial passenger aircraft using the central composite design method. International Journal of Aeronautics and Astronautics, 2(1), 1-8 . https://dergipark.org.tr/en/pub/ijaa/issue/62592/945053

Hernández-Silva, D., Pulido, M., Zuria, I., Gallina, S. y Sánchez-Rojas, G. (2018). El manejo como herramienta para la conservación y aprovechamiento de la fauna silvestre: Acceso a la sustentabilidad en México. Acta Universitaria, 28(4), 31-41. https://doi.org/10.15174/au.2018.2171

Hu, Y., Xing, P., Yang, F., Feng, G., Yang, G. y Zhang, Z. (2020). A birdstrike risk assessment model and its application at Ordos Airport, China. Scientific Reports, 10(1), 1-7. https://doi.org/10.1038/s41598-020-76275-z

International Civil Aviation Organization (ICAO). (2020). Doc. 9137. Airport Services Manual. Part 3. Wildlife Control Hazard Management. ICAO.

Jeffery, R. y Buschke, F. (2019). Urbanization around an airfield alters bird community composition, but not the hazard of bird-aircraft collision. Environmental Conservation, 46(2), 124-131. 10.1017/S0376892918000231

Maragakis, I. (2009). Bird population trends and their impact on aviation safety 1999-2008. European Aviation Safety Agency. https://skybrary.aero/sites/default/files/bookshelf/615.pdf

Marateo, G., Grilli, P., Ferretti, V. y Bouzas, N. (2011). Diagnóstico de riesgo aviario en un aeródromo de un aérea megadiversa del Perú. Revista Conexao SIPAER, 3(2), 203-227.

Martin, J. A., Belant, J. L., DeVault, T. L., Blackwell, B. F., Burger Jr., L. W., Riffell, S. K. y Wang, G. (2011). Wildlife risk to aviation: A multi-scale issue requires a multi-scale solution. Human-Wildlife Interactions, 5(2), 198-203. https://www.jstor.org/stable/24868880

Martín-Vélez, V., Mohring, B., Van Leeuwen, C. H. A., Shamoun-Baranes, J., Thaxter, C. B., Baert, J. M., Camphuysen, C. J. y Green, A. J. (2020). Functional connectivity network between terrestrial and aquatic habitats by a generalist waterbird, and implications for biovectoring. Science of the Total Environment, 705, 135886. https://doi.org/10.1016/j.scitotenv.2019.135886

Martínez Moreno, L. K. (2019). Planeación del suelo en torno al aeropuerto: consideraciones para un ordenamiento territorial compatible [tesis de maestría, Universidad Nacional de Colombia]. Repositorio institucional Unal. https://repositorio.unal.edu.co/handle/unal/69867

Matamoros, A. G. y Torres, C. A. (2014). Identificación de los factores de atracción de fauna en las proximidades del Aeropuerto Toncontín. Ciencias Espaciales, 7(2), 96-108. https://doi.org/10.5377/ce.v7i2.2522

Metz, I. C., Ellerbroek, J., Mühlhausen, T., Kügler, D. y Hoekstra, J. M. (2020). The Bird Strike Challenge. Aerospace, 7(3), 26. https://doi.org/10.3390/aerospace7030026

Metz, I. C., Ellerbroek, J., Mühlhausen, T., Kügler, D., Kern, S. y Hoekstra, J. M. (2021a). The Efficacy of Operational Bird Strike Prevention. Aerospace, 8(1), 17. https://doi.org/10.3390/aerospace8010017

Metz, I. C., Ellerbroek, J., Mühlhausen, T., Kügler, D. y Hoekstra, J. M. (2021b). Analysis of Risk-Based Operational Bird Strike Prevention. Aerospace, 8(2), 32. https://doi.org/10.3390/aerospace8020032

Ning, H. y Chen, W. (2014). Bird strike risk evaluation at airports. Aircraft Engineering and Aerospace Technology, 86(2), 129-137. https://doi.org/10.1108/AEAT-07-2012-0111

Novoselova, N. S., Novoselov, A. A., Macarrão, A., Gallo-Ortiz, G. y Silva, W. R. (2020). Remote sensing applications for abating aircraft-bird strike risks in Southeast Brazil. Human-Wildlife Interactions, 14(1), 8. https://doi.org/10.26077/3z5d-eb31

Ojasti, J. y Dallmeier, F. (2000). Manejo de Fauna Silvestre Neotropical. SI/MAB Series #5. Smithsonian Institution/MAB Biodiversity Program.

Pfeiffer, M. B., Blackwell, B. F. y DeVault, T. L. (2020). Collective effect of landfills and landscape composition on bird-aircraft collisions. Human-Wildlife Interactions, 14(1), 9. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1579&context=hwi

Pfeiffer, M. B., Kougher, J. y DeVault, T. L. (2018). Civil airports from a landscape perspective: A multi-scale approach with implications for reducing bird strikes. Landscape and Urban Planning, 4(9), 38-45. https://doi.org/10.1016/j.landurbplan.2018.07.004

Sadava, D., Heller, H., Orians, G., Purves, W. y Hillis, D. (2009). Vida. La ciencia de la biología. Editorial Médica Panamericana.

Shao, Q., Zhou, Y., Zhu, P., Ma, Y. y Shao, M. (2020a). Key factors assessment on bird strike density distribution in airport habitats: Spatial heterogeneity and geographically weighted regression model. Sustainability, 12(18), 7235. https://doi.org/10.3390/su12187235

Shao, Q., Zhou, Y. y Zhu, P. (2020b). Spatiotemporal analysis of environmental factors on the birdstrike risk in high plateau airport with multi-scale research. Sustainability, 12(22), 9357. https://doi.org/10.3390/su12229357

Smith, T. M. y Smith, R. L. (2007). Ecología. Propiedades de las poblaciones. Pearson Educación.

Sowden, R., Kelly, T. y Dudley, S. (2007). Airport bird hazard risk assessment process. 2007 Bird Strike Committee USA/Canada, 9th Annual Meeting, Kingston, Ontario. https://digitalcommons.unl.edu/birdstrike2007/8

Steele, W. K. y Weston, M. A. (2021). The assemblage of birds struck by aircraft differs among nearby airports in the same bioregion. Wildlife Research, 48(5), 422-455. https://doi.org/10.1071/WR20127

Van Gasteren, H., Krijgsveld, K. L., Klauke, N., Leshem, Y., Metz, I. C., Skakuj, M., Sorbi, S., Schekler, I. y Shamoun-Baranes, J. (2018). Aeroecology meets aviation safety: early warning systems in Europe and the Middle East prevent collisions between birds and aircraft. A Journal of Space and Time in Ecology, 42(5), 899-911. https://doi.org/10.1111/ecog.04125

Wang, J. y Herricks, E. E. (2012). Risk assessment of bird-aircraft strikes at commercial airports: Submodel development. Transportation Research Record, 2266(1), 78-84. https://doi.org/10.3141/2266-09

World Organization for Animal Health (OIE). (2019). Análisis del riesgo asociado a las importaciones. https://www.oie.int/fileadmin/Home/esp/Health_standards/tahc/current/chapitre_import_risk_analysis.pdf

Zhao, B., Wang, N., Fu, Q., Yan, H. y Wu, N. (2019). Searching a site for a civil airport based on bird ecological conservation: An expert-based selection (Dalian, China). Global Ecology and Conservation, 20, 1-12. https://doi.org/10.1016/j.gecco.2019.e00729

Zuluaga, S., Speziale, K. y Lambertucci, S. A. (2021). Global aerial habitat conservation post-COVID-19 anthropause. Trends in Ecology & Evolution, 36(4), 273-277. https://doi.org/10.1016/j.tree.2021.01.009

Published

2022-04-20

Issue

Section

Operational Safety and Aviation Logistics

How to Cite

Theoretical approach to defining the concept of an attractant birdlife site off-airport. (2022). Ciencia Y Poder Aéreo, 17(1), 55-66. https://doi.org/10.18667/cienciaypoderaereo.743