Study of Weld Deposits Tensile Strength in the AA2024-T3 Alloy
DOI:
https://doi.org/10.18667/cienciaypoderaereo.708Keywords:
Mechanical strength, GTAW-P, fracture, hot crackingAbstract
This paper examines the tensile strength of different weld deposits on sheets of AA2024-T3 AlClad aluminum alloy. The weldability of this alloy under arc welding processes is considered limited due to its sensitivity to hot cracking. Therefore, it has been widely studied in solid-state or laser processes in which the thermal impact is reduced. The research aims to study the mechanical behavior of said aluminum alloy when local technology is used for welding. Experimentation included the use of deposits elaborated with combinations of non-consumable violet point electrode, non-consumable green point electrode, ER4043 filler metal, and without filler metal (autogenous welding). Mechanical tests were performed under the ASTM E8 standard and following the recommendations of the AWS D1.2 standard. The corresponding study of fractured surfaces in each deposit was also carried out. Results show a considerable reduction in both mechanical resistance and ductility as a result of the strong presence of porosity, which triggered cracks of various sizes, also linked to embrittlement by hydrogen and the presence of second-phase particles at grain boundaries.
Downloads
References
Ahn, J., Chen, L., He, E., Davies, C. M., & Dear, J. P. (2017). Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3. Journal of Manufacturing Processes, 25, 26-36. https://doi.org/https://doi.org/10.1016/j.jmapro.2016.10.006
Ahn, J., He, E., Chen, L., Dear, J., & Davies, C. (2017). The effect of Ar and He shielding gas on fibre laser weld shape and microstructure in AA 2024-T3. Journal of Manufacturing Processes, 29, 62-73. https://doi.org/https://doi.org/10.1016/j.jmapro.2017.07.011
Ambriz, R. R., & Jaramillo, D. (2014). Mechanical behavior of precipitation hardened aluminum alloys welds. Light Metal Alloys Applications, 35-59.
American Welding Society (2014). AWS D1.2/D1.2M: 2014 - Structural Welding Code-Aluminum (6th Ed.). American National Standard Institute.
American Welding Society (2016). AWS B4.0:2016 - Standard Methods for Mechanical of Welds (8th Ed.). American National Standards Institute.
American Welding Society (2020a). ANSI/AWS A2.4-20 - Standard Symbols for Welding, Brazing, and Nondestructive Examination. American National Standards Institute.
American Welding Society (2020b). ANSI/AWS A3.09-20 - Standard Welding Terms and Definitions. American National Standards Institute.
ASM International (2002). ASM Volume 11 - Failure Analysis and Prevention. En ASM Handbook. Materials Park.
ASM International (2020a). ASM Volume 2 - Properties and Selection: Nonferrous Alloys and Special Purpose Materials. En ASM Handbook. Materials Park.
ASM International. (2020b). asm Volume 6 - Welding, Brazing and Soldering. En ASM Handbook. Materials Park.
ASTM B209-14. (2014). Aluminum and Aluminum-Alloy Sheet and Plate 1. ASTM International, 1-25. https://doi.org/10.1520/B0209-14.2
ASTM E8/E8M-21 (2021). Standard test methods for tension testing of metallic materials 1. astm International, 1-27. https://doi.org/10.1520/E0008
Böllinghaus, T., & Herold, H. (2005). Hot Cracking Phenomena in Welds. Springer. https://books.google.com.co/books?id=pLprPeLY-T0C
Cavaliere, P., Nobile, R., Panella, F. W., & Squillace, A. (2006). Mechanical and microstructural behaviour of 2024- 7075 aluminium alloy sheets joined by friction stir welding. International Journal of Machine Tools and Manufacture, 46(6), 588-594. https://doi.org/10.1016/j.ijmachtools.2005.07.010
Chen, Y., Ding, H., Li, J., Zhao, J., Fu, M., & Li, X. (2015). Effect of welding heat input and post-welded heat treatment on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy. Transactions of Nonferrous Metals Society of China, 25(8), 2524-2532. https://doi.org/10.1016/S1003-6326(15)63871-7
Du, J., Zhao, G., & Wei, Z. (2019). Effects of Welding Speed and Pulse Frequency on Surface Depression in Variable Polarity Gas Tungsten Arc Welding of Aluminum Alloy. Me- tals, 9(2), 114-134. https://doi.org/10.3390/met9020114
Esfahani, M. M., Farzadi, A., & Zaree, S. R. A. (2018). Effect of welding speed on gas metal arc weld pool in commercially pure aluminum: theoretically and experimentally. Russian Journal of Non-Ferrous Metals, 59(1), 82-92. https://doi.org/10.3103/S1067821218010121
Espejo Mora, É., & Hernández Albañil, H. (2017). Análisis de fallas de estructuras y elementos mecánicos. Universidad Nacional de Colombia.
Fu, R., Zhang, J., Li, Y., Kang, J., Liu, H., & Zhang, F. (2013). Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet. Materials Science and Engineering: A, 559, 319-324. https://doi.org/10.1016/j.msea.2012.08.105
Gowthaman, P. S., & Saravanan, B. A. (2020). Determination of weldability study on mechanical properties of dissimilar Al-alloys using Friction stir welding process. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.08.599
Hashimoto, T., Zhang, X., Zhou, X., Skeldon, P., Haigh, S. J., & Thompson, G. E. (2016). Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging. Corrosion Science, 103, 157-164. https://doi.org/10.1016/j.corsci.2015.11.013
Hatch, J. E. (1984). Aluminum Properties and Physical Metallurgy. Aluminum Science and Technology. ASM International. https://doi.org/10.1361/appm1984p001
Hima Bindu, A., Chaitanya, B. S. K., Ajay, K., & Sudhakar, I. (2020). Investigation on feasibility of dissimilar welding of AA2124 and AA7075 aluminium alloy using tungsten inert gas welding. Materials Today: Proceedings, 26, 2.283-2.288. https://doi.org/10.1016/j.matpr.2020.02.494
Jones, M. J., Heurtier, P., Desrayaud, C., Montheillet, F., Alle- haux, D., & Driver, J. H. (2005). Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy. Scripta Materialia, 52(8), 693-697. https://doi.org/10.1016/j.scriptamat.2004.12.027
Kou, S, & Le, Y. (1988). Welding parameters and the grain structure of weld metal-A thermodynamic consideration. Metallurgical Transactions A, 19(4), 1.075-1.082. https://doi.org/10.1007/BF02628392
Kou, Sindo. (2003). Welding Metallurgy (2nd Ed.). John Wiley & Sons, Inc. https://doi.org/10.1016/S00167878(62)80017-0
Lancaster, J. F. (1999). Metallurgy of Welding (6th Ed.). Abington Publishing.
Liang, M., Chen, L., Zhao, G., & Guo, Y. (2020). Effects of solution treatment on the microstructure and mechanical properties of naturally aged EN AW 2024 Al alloy sheet. Journal of Alloys and Compounds, 824, 153943. https://doi.org/10.1016/j.jallcom.2020.153943
Lippold, J. C. (2015). Welding metallurgy and weldability. John Wiley & Sons, Inc.
Lippold, J., Böllinghaus, T., & Cross, C. E. (2011). Hot cracking phenomena in welds III. Springer Science & Business Media.
Liu, J., & Kou, S. (2017). Susceptibility of ternary aluminum alloys to cracking during solidification. Acta Materialia, 125, 513-523. https://doi.org/10.1016/j.actamat.2016.12.028
Liu, Y., Teng, F., Cao, F. H., Yin, Z. X., Jiang, Y., Wang, S. B., & Shen, P. K. (2019). Defective GP-zones and their evolution in an Al-Cu-Mg alloy during high-temperature aging.
Journal of Alloys and Compounds, 774, 988-996. https://doi.org/10.1016/j.jallcom.2018.10.061
Maamar, H., Mohamed, K., Rafik, R. O., Toufik, F., Nabil, D., & Djilali, A. (2008). Heat treatment and welding effects on mechanical properties and microstructure evolution of 2024 and 7075 aluminium alloys. Materiali in Tehnologije, 42(1), 18.
Mathers, G. (2002). The Welding of aluminium and its alloys. CRC Press.
Miller, P. L., Lyttle, K. A., Neff, J. B., Steyer, D. A., & Pierce., K.
G. (2013). Welding Gas Compositions and Method for Use (20150165565). Patent Application Publication. https://patents.justia.com/patent/20150165565#history
Mohapatra, S., & Sarangi, H. (2016). Comparison between tungsten inert gas and friction stir welding in commercial aluminium alloy plates. Journal of Chemical and Pharmaceutical Sciences, 2(3), 1.485-1.490.
Mondolfo, L. F. (1976). Aluminum Alloys: Structure and Properties. Butterworths.
Mouritz, A. P. (2012). Introduction to aerospace materials. Jour- nal of the Korean Medical Association (Vol. 55). Woodhead Publishing. https://doi.org/10.5124/jkma.2012.55.7.649
Norman, A. F., Drazhner, V., & Prangnell, P. B. (1999). Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an Al-Cu-Mg-Mn alloy. Materials Science and Engineering: A, 259(1), 53-64. https://doi.org/10.1016/S0921-5093(98)00873-9
Prakash, S., Kumar, R. J. F., & Jerome, S. (2018). Effect of heat treatment on microstructure and mechanical properties of CMT welded Aluminium alloy 2024. Materials Today: Proceedings, 5(13), 26.997-2.7003. https://doi.org/10.1016/j.matpr.2018.09.003
Qi, Z., Qi, B., Cong, B., Sun, H., Zhao, G., & Ding, J. (2019). Microstructure and mechanical properties of wire + arc additively manufactured 2024 aluminum alloy components: As-deposited and post heat-treated. Journal of Manufacturing Processes, 40, 27-36. https://doi.org/10.1016/j.jmapro.2019.03.003
Soysal, T., & Kou, S. (2019). Effect of filler metals on solidification cracking susceptibility of Al alloys 2024 and 6061. Journal of Materials Processing Technology, 266, 421-428. https://doi.org/10.1016/j.jmatprotec.2018.11.022
Squillace, A., De Fenzo, A., Giorleo, G., & Bellucci, F. (2004). A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints. Journal of Materials Processing Technology, 152(1), 97-105. https://doi.org/10.1016/j.jmatprotec.2004.03.022
Tier, M., Santos, J. F. dos, Souza Rosendo, T. de, Mazzaferro, J. A. E., Mazzaferro, C. C. P., Strohaecker, T. R., Bergmann, L., Olea, C., & Silva, A. (2009, 13-17 de julio). A study about the mechanical properties of Alclad AA 2024 connections processed by friction spot welding 1 [conferencia]. 64.o Congresso Internacional da Associação Brasileira de Metalurgia, Belo Horizonte, Brasil. https://www.researchgate.net/publication/280081104_A_Study_About_the_Mechanical_Properties_of_Alclad_AA2024_Connections_Processed_by_Friction_Spot_Welding_1
Vijay, S., Rajanarayanan, S., & Ganeshan, G. N. (2020). Analysis on mechanical properties of gas tungsten arc welded dissimilar aluminium alloy (Al2024 & Al6063). Materials Today: Proceedings, 21, 384-391. https://doi.org/10.1016/j.matpr.2019.06.136
Wang, S. B., Liu, Z. R., Xia, S. L., Key, J., & Chen, J. H. (2017). Tetragonal-prism-like Guinier-Preston-Bagaryatsky zones in an AlCuMg alloy. Materials Characterization, 132, 139-144. https://doi.org/10.1016/j.matchar.2017.08.014
Downloads
Published
Issue
Section
Categories
License
Assignment of Copyrights
Authors assign Ciencia y Poder Aéreo journal the exclusive rights (reproduction, distribution, public communication, and transformation) to exploit and commercialize their work, in whole or in part, in all the formats and modalities of present or future exploitation, in all languages, throughout the life of the work and throughout the world.
All contents published in Ciencia y Poder Aéreo journal are licensed under a Creative Commons Attribution 4.0 International License, whose complete information is available at http://creativecommons.org/licenses/by/4.0/
Under the terms of this license, users are free to download, print, extract, archive, distribute and publicly communicate the content of articles, provided that proper credit is granted to authors and Ciencia y Poder Aéreo, scientific journal of the Graduate School of the Colombian Air Force. Except when otherwise indicated, this site and its contents are licensed under a Creative Commons Attribution 4.0 International License.
For other uses not considered under this license it is required to contact the Director or the Editor of the journal at the e-mail address cienciaypoderaereo1@gmail.com.
The Graduate School of the Colombian Air Force and this publication are not responsible for the concepts expressed in the articles, including the metadata or the affiliation stated by authors. This is the full responsibility of the authors.