Orbital Evolution of the FACSAT-1 Satellite and Estimation of its Re-entry Time

Authors

DOI:

https://doi.org/10.18667/cienciaypoderaereo.694

Keywords:

CubeSat, orbital decay, low earth orbit, orbital propagation, atmospheric resistance

Abstract

This work presents data related to the launch of the FACSAT-1 satellite into orbit —the first property of a Colombian government institution— and estimates on its decay rate during the first two years of operation. For this purpose, we used data of the orbital elements from the date of its launching (late November 2018) until the end of 2020. Two well-differentiated decay stages were observed: 8 m/d and 18 m/d (from late September 2020); the latter due to increased solar activity by a rise of 2.8 GHz in the solar emission flux. This work also reports the results obtained after the implementation of a high-fidelity propagator, which allows modeling the evolution of orbital elements in the upcoming years. Said modeling also made it possible to estimate the re-entry of the FACSAT-1 satellite for the first half of 2030 and predict the behavior of orbital elements in the next nine years.

Downloads

Download data is not yet available.

Author Biographies

  • José Gregorio Portilla Barbosa, Universidad Nacional de Colombia

    Doctorado en Física Teórica. Universidad Nacional de Colombia. Colombia. Grupo de Investigación: Astronomía, astrofísica y cosmología Rol de investigador: téorico y escritura.

  • Jhonathan Orlando Murcia Piñeros, Instituto Nacional de Investigaciones Espaciales

    Doctorado en Ingeniería y Tecnología Espacial. Instituto Nacional de Investigaciones Espaciales del Brasil. Brasil. Grupo de Investigación: Grupo matemática pura y aplicada Rol de investigador: téorico y escritura.

References

Bryce. (2020). Smallsats by the Numbers 2020. Bryce space and technology. https://brycetech.com/reports/report-documents/Bryce_Smallsats_2020.pdf

Centro de Investigación en Tecnologías Aeroespaciales. (2020, 9 de noviembre). Desarrollo de segunda plataforma satelital: FACSAT-2. Citae; Fuerza Aérea Colombiana. http://www.fac.mil.co/inicia-desarrollo-de-segunda-plataforma-satelital-de-su-fuerza-aérea-colombiana-facsat-2

Choi, E, J., Cho, S., Lee, D., Kim, S., & Jo, J. H. (2017). A study on reentry predictions of uncontrolled space objects for space situational awareness. Journal of Astronomy and Space Sciences, 34(4), 289-302. https://doi.org/10.5140/JASS.2017.34.4.289

Clark, S. (2018, 29 de noviembre). Indian rocket launches 31 satellites. Spaceflight Now. http://spaceflightnow.com/2018/11/29/indian-rocket-launches-31-satellites/

Departamento Estratégico de Comunicaciones. (2020, 23 de enero). iv campaña antártica de la Fuerza Aérea en su recta final. dec; Fuerza Aérea Colombiana. http://www.fac.mil.co/iv-campaña-antártica-de-la-fuerza-aérea-en-su-recta-final

EoPortal Directory. (2018). HySIS (HyperSpectral Imaging Satellite). eo Sharing Earth Observation Resources. https://directory.eoportal.org/web/eoportal/satellite-missions/h/hysis

Fernholz, T. (2018). Rocket billionaires: Elon Musk, Jeff Bezos, and the new space race. Houghton Mifflin Harcourt. Giuliari, G., Klenze, T., Legner, M., Basin, D., & Perrig, A. (2020).

Internet backbones in space. acm sigcomm Computer Communication Review, 50(1), 25-37. https://doi.org/10.1145/3390251.3390256

Hintz, G. R. (2015). Orbital Mechanics and Astrodynamics. Springer.

International Organization for Standardization, ISO. (2016). ISO 27852:2016. Space systems - Estimation of orbit life- time. iso. https://www.iso.org/standard/68572.html#:~:text=ISO%2027852%3A2016%20describes%20a,debris%20in%20LEO%2Dcrossing%20orbits.

Kelecy, T., Hall, D., Hamada, K., & Stocker, D. (2007). Satellite maneuver detection using two-line elements data. En S. Ryan (Ed.), Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference (p. E19). https://ui.adsabs.harvard.edu/abs/2007amos.confE..19K/abstract

Kulu, E. (2021). Nanosats database. https://www.nanosats.eu/

Laboratory for Atmospheric & Space Physics, lasp. (2017). Penticton Solar Radio Flux at 10.7cm, Time Series. lasp. https://lasp.colorado.edu/lisird/data/penticton_radio_flux/

Lee, B. S. (2002). norad tle conversion from osculating orbital element. Journal of Astronomy and Space Sciences, 19(4), 395-402. https://doi.org/10.5140/JASS.2002.19.4.395

León-Lozada, F. (2018, 3 de diciembre). La Fuerza Aérea de Colombia lanzó FACSAT-1. Latam Satelital. http://latamsatelital.com/la-fuerza-aerea-colombia-lanzo-facsat-1/

Levit, C., & Marshall, W. (2011). Improved orbit predictions using two-line elements. Advances in Space Research, 47(7), 1107-1115. https://doi.org/10.1016/j.asr.2010.10.017

Madi, M., & Sokolova, O. (2021). Space debris peril: pathways and opportunities. crc Press.

Pardini, C., & Anselmo, L. (2013, 21-23 de mayo). Reentry predictions for uncontrolled satellites: results and challenges [conferencia]. Actas de la 6th conferencia IASS, Noordwijk, Países Bajos.

Piñeros, J. O., Dos Santos, W. A., & Prado, A. F. (2021). Analysis of the orbit lifetime of CubeSats in low Earth orbits including periodic variation in drag due to attitude motion. Advances in Space Research, 67(2), 902-918. https://doi.org/10.1016/j.asr.2020.10.024

Portilla, J. G. (2009). Elementos de astronomía de posición. Universidad Nacional de Colombia.

Portilla, J. G. (2012). La órbita del satélite Libertad 1. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 36(141), 491-500. http://www.scielo.org.co/scielo.phpscript=sci_arttext&pid=S037039082012000400002

Portilla, J. G. (2018). Principios de mecánica celeste. Proceditor.

Reiland, N., Rosengren, A. J., Malhotra, R., & Bombardelli, C. (2020). Assessing and minimizing collisions in satellite mega-constellations. Advances in Space Research, 67(11), 3755-3774. https://doi.org/10.1016/j.asr.2021.01.010

Safyan, M. (2020). Planet’s Dove Satellite Constellation. En J. Pelton (Eds.), Handbook of Small Satellites (pp. 1-17). Springer. https://doi.org/10.1007/978-3-030-20707-6_64-1

Stakem, P. H. (2020). History & Future of Cubesats. Edición Kindle.

Tikami, A., Moura, C. O., & Dos-Santos, W. A. (2017). First on-or- bit results from the Tancredo-1 Picosat mission. Session (Vol. 2). Proceedings of the 1st iaa Latin American Symposium on Small Satellites: Advanced Technologies and Distributed Systems. http://mtcm21b.sid.inpe.br/col/sid.inpe.br/mtcm21b/2017/06.28.19.06/doc/tikami_first.pdf

Vallado, D. A. (2013). Fundamentals of Astrodynamics and Applications. Wertz.

Vallado, D. A., & Cefola, P. J. (2012, October). Two-line element sets–practice and use [ponencia]. 63rd International Astronautical Congress, Nápoles, Italia.

Wertz, J. R., Everett, D. F., & Puschell, J. J. (2011). Space mission engineering: the new smad. Microcosm Press.

Woellert, K., Ehrenfreund, P., Ricco A. J., & Hertzfeld, H. (2011). Cubesats: Cost-effective science and technology platforms for emerging and developing nations. Advances in Space Research, 47(4), 663-684. https://doi.org/10.1016/j.asr.2010.10.009

Xu, X. L., & Xiong, Y. Q. (2018). Orbit error characteristic and distribution of tle using champ orbit data. Astrophysics and Space Science, 363(2), 1-6. https://doi.org/10.1007/s10509-018-3251-z

Published

2021-06-01

Issue

Section

Technology and Innovation

How to Cite

Orbital Evolution of the FACSAT-1 Satellite and Estimation of its Re-entry Time. (2021). Ciencia Y Poder Aéreo, 16(1), 6-17. https://doi.org/10.18667/cienciaypoderaereo.694