Orbital Evolution of the FACSAT-1 Satellite and Estimation of its Re-entry Time
DOI:
https://doi.org/10.18667/cienciaypoderaereo.694Keywords:
CubeSat, orbital decay, low earth orbit, orbital propagation, atmospheric resistanceAbstract
This work presents data related to the launch of the FACSAT-1 satellite into orbit —the first property of a Colombian government institution— and estimates on its decay rate during the first two years of operation. For this purpose, we used data of the orbital elements from the date of its launching (late November 2018) until the end of 2020. Two well-differentiated decay stages were observed: 8 m/d and 18 m/d (from late September 2020); the latter due to increased solar activity by a rise of 2.8 GHz in the solar emission flux. This work also reports the results obtained after the implementation of a high-fidelity propagator, which allows modeling the evolution of orbital elements in the upcoming years. Said modeling also made it possible to estimate the re-entry of the FACSAT-1 satellite for the first half of 2030 and predict the behavior of orbital elements in the next nine years.
Downloads
References
Bryce. (2020). Smallsats by the Numbers 2020. Bryce space and technology. https://brycetech.com/reports/report-documents/Bryce_Smallsats_2020.pdf
Centro de Investigación en Tecnologías Aeroespaciales. (2020, 9 de noviembre). Desarrollo de segunda plataforma satelital: FACSAT-2. Citae; Fuerza Aérea Colombiana. http://www.fac.mil.co/inicia-desarrollo-de-segunda-plataforma-satelital-de-su-fuerza-aérea-colombiana-facsat-2
Choi, E, J., Cho, S., Lee, D., Kim, S., & Jo, J. H. (2017). A study on reentry predictions of uncontrolled space objects for space situational awareness. Journal of Astronomy and Space Sciences, 34(4), 289-302. https://doi.org/10.5140/JASS.2017.34.4.289
Clark, S. (2018, 29 de noviembre). Indian rocket launches 31 satellites. Spaceflight Now. http://spaceflightnow.com/2018/11/29/indian-rocket-launches-31-satellites/
Departamento Estratégico de Comunicaciones. (2020, 23 de enero). iv campaña antártica de la Fuerza Aérea en su recta final. dec; Fuerza Aérea Colombiana. http://www.fac.mil.co/iv-campaña-antártica-de-la-fuerza-aérea-en-su-recta-final
EoPortal Directory. (2018). HySIS (HyperSpectral Imaging Satellite). eo Sharing Earth Observation Resources. https://directory.eoportal.org/web/eoportal/satellite-missions/h/hysis
Fernholz, T. (2018). Rocket billionaires: Elon Musk, Jeff Bezos, and the new space race. Houghton Mifflin Harcourt. Giuliari, G., Klenze, T., Legner, M., Basin, D., & Perrig, A. (2020).
Internet backbones in space. acm sigcomm Computer Communication Review, 50(1), 25-37. https://doi.org/10.1145/3390251.3390256
Hintz, G. R. (2015). Orbital Mechanics and Astrodynamics. Springer.
International Organization for Standardization, ISO. (2016). ISO 27852:2016. Space systems - Estimation of orbit life- time. iso. https://www.iso.org/standard/68572.html#:~:text=ISO%2027852%3A2016%20describes%20a,debris%20in%20LEO%2Dcrossing%20orbits.
Kelecy, T., Hall, D., Hamada, K., & Stocker, D. (2007). Satellite maneuver detection using two-line elements data. En S. Ryan (Ed.), Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference (p. E19). https://ui.adsabs.harvard.edu/abs/2007amos.confE..19K/abstract
Kulu, E. (2021). Nanosats database. https://www.nanosats.eu/
Laboratory for Atmospheric & Space Physics, lasp. (2017). Penticton Solar Radio Flux at 10.7cm, Time Series. lasp. https://lasp.colorado.edu/lisird/data/penticton_radio_flux/
Lee, B. S. (2002). norad tle conversion from osculating orbital element. Journal of Astronomy and Space Sciences, 19(4), 395-402. https://doi.org/10.5140/JASS.2002.19.4.395
León-Lozada, F. (2018, 3 de diciembre). La Fuerza Aérea de Colombia lanzó FACSAT-1. Latam Satelital. http://latamsatelital.com/la-fuerza-aerea-colombia-lanzo-facsat-1/
Levit, C., & Marshall, W. (2011). Improved orbit predictions using two-line elements. Advances in Space Research, 47(7), 1107-1115. https://doi.org/10.1016/j.asr.2010.10.017
Madi, M., & Sokolova, O. (2021). Space debris peril: pathways and opportunities. crc Press.
Pardini, C., & Anselmo, L. (2013, 21-23 de mayo). Reentry predictions for uncontrolled satellites: results and challenges [conferencia]. Actas de la 6th conferencia IASS, Noordwijk, Países Bajos.
Piñeros, J. O., Dos Santos, W. A., & Prado, A. F. (2021). Analysis of the orbit lifetime of CubeSats in low Earth orbits including periodic variation in drag due to attitude motion. Advances in Space Research, 67(2), 902-918. https://doi.org/10.1016/j.asr.2020.10.024
Portilla, J. G. (2009). Elementos de astronomía de posición. Universidad Nacional de Colombia.
Portilla, J. G. (2012). La órbita del satélite Libertad 1. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 36(141), 491-500. http://www.scielo.org.co/scielo.phpscript=sci_arttext&pid=S037039082012000400002
Portilla, J. G. (2018). Principios de mecánica celeste. Proceditor.
Reiland, N., Rosengren, A. J., Malhotra, R., & Bombardelli, C. (2020). Assessing and minimizing collisions in satellite mega-constellations. Advances in Space Research, 67(11), 3755-3774. https://doi.org/10.1016/j.asr.2021.01.010
Safyan, M. (2020). Planet’s Dove Satellite Constellation. En J. Pelton (Eds.), Handbook of Small Satellites (pp. 1-17). Springer. https://doi.org/10.1007/978-3-030-20707-6_64-1
Stakem, P. H. (2020). History & Future of Cubesats. Edición Kindle.
Tikami, A., Moura, C. O., & Dos-Santos, W. A. (2017). First on-or- bit results from the Tancredo-1 Picosat mission. Session (Vol. 2). Proceedings of the 1st iaa Latin American Symposium on Small Satellites: Advanced Technologies and Distributed Systems. http://mtcm21b.sid.inpe.br/col/sid.inpe.br/mtcm21b/2017/06.28.19.06/doc/tikami_first.pdf
Vallado, D. A. (2013). Fundamentals of Astrodynamics and Applications. Wertz.
Vallado, D. A., & Cefola, P. J. (2012, October). Two-line element sets–practice and use [ponencia]. 63rd International Astronautical Congress, Nápoles, Italia.
Wertz, J. R., Everett, D. F., & Puschell, J. J. (2011). Space mission engineering: the new smad. Microcosm Press.
Woellert, K., Ehrenfreund, P., Ricco A. J., & Hertzfeld, H. (2011). Cubesats: Cost-effective science and technology platforms for emerging and developing nations. Advances in Space Research, 47(4), 663-684. https://doi.org/10.1016/j.asr.2010.10.009
Xu, X. L., & Xiong, Y. Q. (2018). Orbit error characteristic and distribution of tle using champ orbit data. Astrophysics and Space Science, 363(2), 1-6. https://doi.org/10.1007/s10509-018-3251-z
Downloads
Published
Issue
Section
License
Assignment of Copyrights
Authors assign Ciencia y Poder Aéreo journal the exclusive rights (reproduction, distribution, public communication, and transformation) to exploit and commercialize their work, in whole or in part, in all the formats and modalities of present or future exploitation, in all languages, throughout the life of the work and throughout the world.
All contents published in Ciencia y Poder Aéreo journal are licensed under a Creative Commons Attribution 4.0 International License, whose complete information is available at http://creativecommons.org/licenses/by/4.0/
Under the terms of this license, users are free to download, print, extract, archive, distribute and publicly communicate the content of articles, provided that proper credit is granted to authors and Ciencia y Poder Aéreo, scientific journal of the Graduate School of the Colombian Air Force. Except when otherwise indicated, this site and its contents are licensed under a Creative Commons Attribution 4.0 International License.
For other uses not considered under this license it is required to contact the Director or the Editor of the journal at the e-mail address cienciaypoderaereo1@gmail.com.
The Graduate School of the Colombian Air Force and this publication are not responsible for the concepts expressed in the articles, including the metadata or the affiliation stated by authors. This is the full responsibility of the authors.