Mission Design and Synthesis of Operational Factors and Representations of the Space Segment, the Case of FACSAT and EMFF
DOI:
https://doi.org/10.18667/cienciaypoderaereo.678Keywords:
Mission design, space segment, EMFF, FACSAT, operational factors, satellite orientation and translation, CubeSat subsystemsAbstract
This article examines the space segment as part of the structuring process of an aerospace project, starting from the problem of disarticulation of design processes, the omission of operational factors, and unawareness of the behavior of the space segment in orbit. For this purpose, it is necessary to revisit the steps required in the mission design of a space system, the architecture and the constituent subsystems of the generic segment, as well as the useful operational factors for the development of the mission concept. Hence, different representations of the orientation and translation movement of the space segment are presented as a guide for the modeling of low-orbit observation missions. Based on this, two characterizations of design and representation requirements are provided as practical examples —both for the mission design, with the synthesis of mission objectives of a space program, and the representation of the space segment— against the needs of a close proximity mission with in-orbit maneuvering capabilities that may require not one but several coordinated satellites; all this by using the Electromagnetic Formation Flying method (EMFF).
Downloads
References
Agencia Espacial Mexicana [aem]. (2013). Introducción a los Sistemas Espaciales. Secretaría de comunicaciones y Trasportes, sct. http://www.educacionespacial.aem.gob.mx/images/normateca/pdf/CURSO_ISE/Modulo_3.pdf
Álvarez-Reyna, M., Pucheta, J., & Fraire, J. (2019). Determinación precisa de posición y orientación relativa en satélites de arquitectura segmentada. Ajea, (4), 4-6. https://doi.org/10.33414/ajea.4.356.2019
Blasch, E., Pham, K., Chen, G., Wang, G., Li, C., Tian, X., & Shen, D. (2014, October 5-9). Distributed qos Awareness in Satellite Communication Network With Optimal Routing (Quasor) [Conferencia]. ieee/aiaa 33rd Digital Avionics
Systems Conference (dasc). Colorado Springs, co, usa. https://ieeexplore.ieee.org/document/6979501
Braukhane, A., Arza, M., Bacher, M., Calaprice, M., Fiedler, H., Koehne, V., McGuire, H. R., & Rivera, J. J. (2010, marzo 6-13). FormSat, A Scalable Formation Flying Communication Satellite System [Conferencia]. ieee Aerospace Conference. Big Sky, mt, usa. https://ieeexplore.ieee.org/document/5446999
Burleigh, S. C., De Cola, T., Morosi, S., Jayousi, S., Cianca, E., & Fuchs, C. (2019, mayo). From Connectivity to Advanced
Internet Services: A Comprehensive Review of Small Satellites Communications and Networks. Wireless Communications and Mobile Computing, (11), 1-17. https://doi.org/10.1155/2019/6243505
Cepeda, R. (2010). Sistema de control robusto, basado en cuaterniones, para un satélite de órbita baja [Tesis de Maestría]. Pontificia Universidad Javeriana. https://repository.javeriana.edu.co/bitstream/handle/10554/12728/CepedaGomezRudy2010.pdfsequence=1&isAllowed=y
Chávez, S. (2012). Diseño conceptual de un simulador de navegación aeroespacial y prototipo inicial [Tesis de Maestría]. Instituto Nacional de Astrofísica, Óptica y Electrónica. https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/304/1/ChavezBS.pdf
Chung, S. J., Ahsun, U., & Slotine, J. J. E. (2009). Application of Synchronization to Formation Flying Spacecraft:
Lagrangian Approach. Journal of Guidance, Control, and Dynamics, 32(2), 512–526. https://doi.org/10.2514/1.37261
Cortés-García, E. D. (2019). Experimentación del control de actitud en un prototipo de CubeSat con ruedas de reacción [Tesis de pregrado]. Universidad Nacional de Colombia. https://doi.org/10.13140/RG.2.2.24678.3744
Doroshin, A. V. (2018). Attitude Dynamics, Control and Stabilization Of Spacecraft / Satellites. Samara State Aerospace University. https://n9.cl/ihlyr
EasySpin.(2014).RotationsandEulerangles.EasySpin.https://easyspin.org/easyspin/documentation/eulerangles.html
Francisco, A., Somma, J., Dra, D., Lorena, M., & Optar, P. (2018). Cuaterniones y ángulos de Euler para describir rotaciones en R3. Universidad abierta interamericana. http://imgbiblio.vaneduc.edu.ar/fulltext/files/TC126683.pdf
Fugmann, M., & Klinkner, S. (2020). An Automated Constellation Design & Mission Analysis Tool for Finding the Cheapest Mission Architecture [Conferencia]. ssc20-I-07 Mission Architecture, 34th Annual Small Satellite Conference, I (07), 1-12.
Gurfil, P., Herscovitz, J., & Pariente, M. (2012). ssc12-vii-2 The Samson Project - Cluster Flight and Geolocation with Three Autonomous Nano-satellites [Conferencia]. 26 th Annual aiaa/usu Conference on Small Satellites. Utah, usa. https://www.researchgate.net/publication/272710981_SSC12VII2_The_SAMSON_Project__Cluster_Flight_and_Geolocation_with_Three_Autonomous_Nano-satellites
Larson, W. J., & Wertz, J. R. (Eds.). (1999). Space Mission Analysis and Design. United States of America (3rd ed.). Microcosm Press.
Leomanni, M., Bianchini, G., Garulli, A., & Giannitrapani, A. (2017). A Class of Globally Stabilizing Feedback Controllers for the Orbital Rendezvous Problem. International Journal of Robust and Nonlinear Control, 27(18), 4607-4621. https://doi.org/10.1002/rnc.3817
Lin, L., & Yan-Rong, W. (2006). An Analytical Method for Satellite Orbit Prediction. Chinese Astronomy and Astrophysics, 30(1), 68-74. https://doi.org/10.1016/j.chinastron.2006.01.006
Marsden, R. G. (2002, julio). Basic Steps in Designing a Space Mission - A short tutorial. esa. https://swe.ssa.esa.int/TECEES/spweather/Alpbach2002/Marsdenbasic%20steps%20in%20designing%20a%20space%20mission.pdf
Mazal, L., & Gurfil, P. (2014). Closed-loop Distance-keeping for Long-Term Satellite Cluster Flight. Acta Astronautica, 94(1), 73-82. https://doi.org/10.1016/j.actaastro.2013.08.002
Min, H., Guoqiang, Z., & Junling, S. (2010, octubre 22-24). Navigation and Coordination Control System for Formation Flying Satellites [Conferencia]. International Conference on Computer Application and System Modeling, iccasm 2010. Taiyuan, China.
Mingqi, Y., Xurong, D., & Min, H. (2016, agosto 12-14). Design and Simulation for Hybrid leo Communication and Navigation Constellation [Conferencia]. 2016 ieee Chinese Guidance, Navigation and Control Conference, CGNCC. Nanjing, China.
Montenbruck, O. (2005). Satellite Orbits Models - Models, Methods and Applications. Berlin Heidelberg.
Mooij, E., & Ellenbroek, M. (2007, agosto 20-23). Multi-Functional Guidance, Navigation, and Control Simulation Environment [Conferencia]. aiaa Modeling and Simulation Technologies Conference and Exhibit. South Carolina, usa. https://arc.aiaa.org/doi/abs/10.2514/6.2007-6887.
NASA (2007). Systems Engineering Handbook. National Aeronautics and Space Administration, nasa Center edition.
Navarro, W. (2016). Improving Attitude Determination and Control of Resource-constrained CubeSats Using Unscented Kalman Filtering [Tesis de maestría]. Massachusetts Institute of Technology. https://dspace.mit.edu/handle/1721.1/105621
Poveda, G. A. (2017). Propuesta de órbita geoestacionaria para el satélite artificial facsat 01. [Tesis de maestría]. Universidad del Valle.
Prescornitoiu, B., & Morales, M. (2019). Estudio y diseño de constelaciones de nanosatélites en el marco de las comunicaciones IoT [Tesis de pregrado]. Universidad Carlos iii de Madrid. https://earchivo.uc3m.es/handle/10016/29810
Radhakrishnan, R., Edmonson, W. W., Afghah, F., Rodriguez-Osorio, R. M., Pinto, F., & Burleigh, S. C. (2016, mayo). Survey of Inter-Satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View. ieee
Communications Surveys & Tutorials, 18(4), 2442-2473. https://doi.org/10.1109/COMST.2016.2564990
Rodríguez-Pirateque, G. W., & Sofrony Esmeral, J. (2018). Revisión de sistemas de control en red como base para sistemas satelitales de pequeña escala. Ciencia y Poder Aéreo, 13(2), 90-125. https://doi.org/10.18667/cienciaypoderaereo.604
Roscoe, C. W., Westphal, J. J., & Mosleh, E. (2018). Overview and gnc Design of the CubeSat Proximity Operations
Demonstration (cpod) mission. Acta Astronautica, 153, 410-421. https://doi.org/10.1016/j.actaastro.2018.03.033
Sánchez, R., & Alonso, R. (2010). Control de Vehículos Espaciales. Revista Iberoamericana de Automática e Informática Industrial, 2(3), 6-24. http://hdl.handle.net/10251/146465
Schaub, H., & Junkins, J. (2009). Analytical Mechanics of Space Systems (2nd ed.). American Institute of Aeronautics & Astronautic, AIAA.
Sidi, M. J. (1997). Spacecraft dynamics and control – A practical engineering approach. Israel Aircraft Industries Ltd. and Tel Aviv University.
Vassar, R. H., & Sherwood, R. B. (1985, marzo). Formation Keeping for a Pair of Satellites in a Circular Obit. Journal of
Guidance, Control, and Dynamics, jgcd, 8(2). https://arc.aiaa.org/doi/10.2514/3.19965
Vázquez, R. V. (2015). Mecánica Orbital y Vehículos Espaciales. Universidad de Sevilla.
Wertz, J. (1978). Spacecraft Attitude Determination and Control. Springer Science & Business Media.
Xu, S., Wang, X.W., & Huang, M. (2018, enero). Software-Defined Next-Generation Satellite Networks: Architecture,
Challenges, and Solutions. ieee Access, 6, 4027-4041. https://doi.org/10.1109/ACCESS.2018.2793237
Yang, Y. (2012, December). Spacecraft Attitude Determination and Control: Quaternion based method. Annual Reviews in Control, 36(2), 198-219. https://doi.org/10.1016/j.arcontrol.2012.09.003
Younes, A. B., & Mortari, D. (2019). Derivation of All Attitude Error Governing Equations for Attitude Filtering and Control. Sensors, 19(21), 4-6. https://doi.org/10.3390/s19214682
Downloads
Published
Issue
Section
License
Assignment of Copyrights
Authors assign Ciencia y Poder Aéreo journal the exclusive rights (reproduction, distribution, public communication, and transformation) to exploit and commercialize their work, in whole or in part, in all the formats and modalities of present or future exploitation, in all languages, throughout the life of the work and throughout the world.
All contents published in Ciencia y Poder Aéreo journal are licensed under a Creative Commons Attribution 4.0 International License, whose complete information is available at http://creativecommons.org/licenses/by/4.0/
Under the terms of this license, users are free to download, print, extract, archive, distribute and publicly communicate the content of articles, provided that proper credit is granted to authors and Ciencia y Poder Aéreo, scientific journal of the Graduate School of the Colombian Air Force. Except when otherwise indicated, this site and its contents are licensed under a Creative Commons Attribution 4.0 International License.
For other uses not considered under this license it is required to contact the Director or the Editor of the journal at the e-mail address cienciaypoderaereo1@gmail.com.
The Graduate School of the Colombian Air Force and this publication are not responsible for the concepts expressed in the articles, including the metadata or the affiliation stated by authors. This is the full responsibility of the authors.