Mission Design and Synthesis of Operational Factors and Representations of the Space Segment, the Case of FACSAT and EMFF

Authors

DOI:

https://doi.org/10.18667/cienciaypoderaereo.678

Keywords:

Mission design, space segment, EMFF, FACSAT, operational factors, satellite orientation and translation, CubeSat subsystems

Abstract

This article examines the space segment as part of the structuring process of an aerospace project, starting from the problem of disarticulation of design processes, the omission of operational factors, and unawareness of the behavior of the space segment in orbit. For this purpose, it is necessary to revisit the steps required in the mission design of a space system, the architecture and the constituent subsystems of the generic segment, as well as the useful operational factors for the development of the mission concept. Hence, different representations of the orientation and translation movement of the space segment are presented as a guide for the modeling of low-orbit observation missions. Based on this, two characterizations of design and representation requirements are provided as practical examples —both for the mission design, with the synthesis of mission objectives of a space program, and the representation of the space segment— against the needs of a close proximity mission with in-orbit maneuvering capabilities that may require not one but several coordinated satellites; all this by using the Electromagnetic Formation Flying method (EMFF).

Downloads

Download data is not yet available.

Author Biographies

  • German-Wedge Rodríguez-Pirateque, Universidad Nacional de Colombia

    Magíster en Ingeniería Mecánica y Mecatrónica. Universidad Nacional de Colombia Grupo de investigación en electrónica y tecnologías para la defensa (TESDA) Rol de investigador: teórico, experimental y escritura.

  • Jorge Sofrony Esmeral, Universidad Nacional de Colombia

    Ph. D. en Sistemas de Control. Universidad Nacional de Colombia. Grupo de investigación: unrobot-Grupo de Plataformas Robóticas Rol de investigador: teórico, experimental y escritura.

  • Ernesto David Cortés García, Universidad Nacional de Colombia

    Ingeniero Mecatrónico. Universidad Nacional de Colombia. Rol de investigador: teórico, experimental y escritura.

  • Kennet Rueda, Universidad Nacional de Colombia

    Estudiante de Física. Universidad Nacional de Colombia. Rol de investigador: teórico, experimental y escritura.

References

Agencia Espacial Mexicana [aem]. (2013). Introducción a los Sistemas Espaciales. Secretaría de comunicaciones y Trasportes, sct. http://www.educacionespacial.aem.gob.mx/images/normateca/pdf/CURSO_ISE/Modulo_3.pdf

Álvarez-Reyna, M., Pucheta, J., & Fraire, J. (2019). Determinación precisa de posición y orientación relativa en satélites de arquitectura segmentada. Ajea, (4), 4-6. https://doi.org/10.33414/ajea.4.356.2019

Blasch, E., Pham, K., Chen, G., Wang, G., Li, C., Tian, X., & Shen, D. (2014, October 5-9). Distributed qos Awareness in Satellite Communication Network With Optimal Routing (Quasor) [Conferencia]. ieee/aiaa 33rd Digital Avionics

Systems Conference (dasc). Colorado Springs, co, usa. https://ieeexplore.ieee.org/document/6979501

Braukhane, A., Arza, M., Bacher, M., Calaprice, M., Fiedler, H., Koehne, V., McGuire, H. R., & Rivera, J. J. (2010, marzo 6-13). FormSat, A Scalable Formation Flying Communication Satellite System [Conferencia]. ieee Aerospace Conference. Big Sky, mt, usa. https://ieeexplore.ieee.org/document/5446999

Burleigh, S. C., De Cola, T., Morosi, S., Jayousi, S., Cianca, E., & Fuchs, C. (2019, mayo). From Connectivity to Advanced

Internet Services: A Comprehensive Review of Small Satellites Communications and Networks. Wireless Communications and Mobile Computing, (11), 1-17. https://doi.org/10.1155/2019/6243505

Cepeda, R. (2010). Sistema de control robusto, basado en cuaterniones, para un satélite de órbita baja [Tesis de Maestría]. Pontificia Universidad Javeriana. https://repository.javeriana.edu.co/bitstream/handle/10554/12728/CepedaGomezRudy2010.pdfsequence=1&isAllowed=y

Chávez, S. (2012). Diseño conceptual de un simulador de navegación aeroespacial y prototipo inicial [Tesis de Maestría]. Instituto Nacional de Astrofísica, Óptica y Electrónica. https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/304/1/ChavezBS.pdf

Chung, S. J., Ahsun, U., & Slotine, J. J. E. (2009). Application of Synchronization to Formation Flying Spacecraft:

Lagrangian Approach. Journal of Guidance, Control, and Dynamics, 32(2), 512–526. https://doi.org/10.2514/1.37261

Cortés-García, E. D. (2019). Experimentación del control de actitud en un prototipo de CubeSat con ruedas de reacción [Tesis de pregrado]. Universidad Nacional de Colombia. https://doi.org/10.13140/RG.2.2.24678.3744

Doroshin, A. V. (2018). Attitude Dynamics, Control and Stabilization Of Spacecraft / Satellites. Samara State Aerospace University. https://n9.cl/ihlyr

EasySpin.(2014).RotationsandEulerangles.EasySpin.https://easyspin.org/easyspin/documentation/eulerangles.html

Francisco, A., Somma, J., Dra, D., Lorena, M., & Optar, P. (2018). Cuaterniones y ángulos de Euler para describir rotaciones en R3. Universidad abierta interamericana. http://imgbiblio.vaneduc.edu.ar/fulltext/files/TC126683.pdf

Fugmann, M., & Klinkner, S. (2020). An Automated Constellation Design & Mission Analysis Tool for Finding the Cheapest Mission Architecture [Conferencia]. ssc20-I-07 Mission Architecture, 34th Annual Small Satellite Conference, I (07), 1-12.

Gurfil, P., Herscovitz, J., & Pariente, M. (2012). ssc12-vii-2 The Samson Project - Cluster Flight and Geolocation with Three Autonomous Nano-satellites [Conferencia]. 26 th Annual aiaa/usu Conference on Small Satellites. Utah, usa. https://www.researchgate.net/publication/272710981_SSC12VII2_The_SAMSON_Project__Cluster_Flight_and_Geolocation_with_Three_Autonomous_Nano-satellites

Larson, W. J., & Wertz, J. R. (Eds.). (1999). Space Mission Analysis and Design. United States of America (3rd ed.). Microcosm Press.

Leomanni, M., Bianchini, G., Garulli, A., & Giannitrapani, A. (2017). A Class of Globally Stabilizing Feedback Controllers for the Orbital Rendezvous Problem. International Journal of Robust and Nonlinear Control, 27(18), 4607-4621. https://doi.org/10.1002/rnc.3817

Lin, L., & Yan-Rong, W. (2006). An Analytical Method for Satellite Orbit Prediction. Chinese Astronomy and Astrophysics, 30(1), 68-74. https://doi.org/10.1016/j.chinastron.2006.01.006

Marsden, R. G. (2002, julio). Basic Steps in Designing a Space Mission - A short tutorial. esa. https://swe.ssa.esa.int/TECEES/spweather/Alpbach2002/Marsdenbasic%20steps%20in%20designing%20a%20space%20mission.pdf

Mazal, L., & Gurfil, P. (2014). Closed-loop Distance-keeping for Long-Term Satellite Cluster Flight. Acta Astronautica, 94(1), 73-82. https://doi.org/10.1016/j.actaastro.2013.08.002

Min, H., Guoqiang, Z., & Junling, S. (2010, octubre 22-24). Navigation and Coordination Control System for Formation Flying Satellites [Conferencia]. International Conference on Computer Application and System Modeling, iccasm 2010. Taiyuan, China.

Mingqi, Y., Xurong, D., & Min, H. (2016, agosto 12-14). Design and Simulation for Hybrid leo Communication and Navigation Constellation [Conferencia]. 2016 ieee Chinese Guidance, Navigation and Control Conference, CGNCC. Nanjing, China.

Montenbruck, O. (2005). Satellite Orbits Models - Models, Methods and Applications. Berlin Heidelberg.

Mooij, E., & Ellenbroek, M. (2007, agosto 20-23). Multi-Functional Guidance, Navigation, and Control Simulation Environment [Conferencia]. aiaa Modeling and Simulation Technologies Conference and Exhibit. South Carolina, usa. https://arc.aiaa.org/doi/abs/10.2514/6.2007-6887.

NASA (2007). Systems Engineering Handbook. National Aeronautics and Space Administration, nasa Center edition.

Navarro, W. (2016). Improving Attitude Determination and Control of Resource-constrained CubeSats Using Unscented Kalman Filtering [Tesis de maestría]. Massachusetts Institute of Technology. https://dspace.mit.edu/handle/1721.1/105621

Poveda, G. A. (2017). Propuesta de órbita geoestacionaria para el satélite artificial facsat 01. [Tesis de maestría]. Universidad del Valle.

Prescornitoiu, B., & Morales, M. (2019). Estudio y diseño de constelaciones de nanosatélites en el marco de las comunicaciones IoT [Tesis de pregrado]. Universidad Carlos iii de Madrid. https://earchivo.uc3m.es/handle/10016/29810

Radhakrishnan, R., Edmonson, W. W., Afghah, F., Rodriguez-Osorio, R. M., Pinto, F., & Burleigh, S. C. (2016, mayo). Survey of Inter-Satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View. ieee

Communications Surveys & Tutorials, 18(4), 2442-2473. https://doi.org/10.1109/COMST.2016.2564990

Rodríguez-Pirateque, G. W., & Sofrony Esmeral, J. (2018). Revisión de sistemas de control en red como base para sistemas satelitales de pequeña escala. Ciencia y Poder Aéreo, 13(2), 90-125. https://doi.org/10.18667/cienciaypoderaereo.604

Roscoe, C. W., Westphal, J. J., & Mosleh, E. (2018). Overview and gnc Design of the CubeSat Proximity Operations

Demonstration (cpod) mission. Acta Astronautica, 153, 410-421. https://doi.org/10.1016/j.actaastro.2018.03.033

Sánchez, R., & Alonso, R. (2010). Control de Vehículos Espaciales. Revista Iberoamericana de Automática e Informática Industrial, 2(3), 6-24. http://hdl.handle.net/10251/146465

Schaub, H., & Junkins, J. (2009). Analytical Mechanics of Space Systems (2nd ed.). American Institute of Aeronautics & Astronautic, AIAA.

Sidi, M. J. (1997). Spacecraft dynamics and control – A practical engineering approach. Israel Aircraft Industries Ltd. and Tel Aviv University.

Vassar, R. H., & Sherwood, R. B. (1985, marzo). Formation Keeping for a Pair of Satellites in a Circular Obit. Journal of

Guidance, Control, and Dynamics, jgcd, 8(2). https://arc.aiaa.org/doi/10.2514/3.19965

Vázquez, R. V. (2015). Mecánica Orbital y Vehículos Espaciales. Universidad de Sevilla.

Wertz, J. (1978). Spacecraft Attitude Determination and Control. Springer Science & Business Media.

Xu, S., Wang, X.W., & Huang, M. (2018, enero). Software-Defined Next-Generation Satellite Networks: Architecture,

Challenges, and Solutions. ieee Access, 6, 4027-4041. https://doi.org/10.1109/ACCESS.2018.2793237

Yang, Y. (2012, December). Spacecraft Attitude Determination and Control: Quaternion based method. Annual Reviews in Control, 36(2), 198-219. https://doi.org/10.1016/j.arcontrol.2012.09.003

Younes, A. B., & Mortari, D. (2019). Derivation of All Attitude Error Governing Equations for Attitude Filtering and Control. Sensors, 19(21), 4-6. https://doi.org/10.3390/s19214682

Published

2020-11-11

Issue

Section

Technology and Innovation

How to Cite

Mission Design and Synthesis of Operational Factors and Representations of the Space Segment, the Case of FACSAT and EMFF. (2020). Ciencia Y Poder Aéreo, 15(2), 143-165. https://doi.org/10.18667/cienciaypoderaereo.678