ADS-B Technologies Use and Appropriation at CETAD

Authors

  • Jimmy Flórez-Zuluaga Fuerza Aérea Colombiana

DOI:

https://doi.org/10.18667/cienciaypoderaereo.141

Keywords:

Radar Signal Processing, Trajectory Forecasting, Tracking radar

Abstract

Air transport has been growing over the last few years, and for this reason, maintaining the safety and improving navigation systems support is a constant challenge in congested airspace. An alternative that has been accepted worldwide because of its advantageous costs and benefits, involves the integration of satellite navigation systems with autonomous broadcasting systems on aircraft, which have allowed to extend situational awareness into areas without coverage of CNS/ATM systems, through an automatic dependent surveillance aircraft system called ADS-B network which allows flight profile sharing with nearby aircraft and ground stations indifferently. This system is being integrated with the monitoring and control systems of many countries, in response to the need of maintaining the air safety in increasingly trafficked airspaces, allowing better use of routes and decreasing operational costs of companies. The Colombian Air Force, through its Technological Development Center for Defense CETAD, is working on understanding and adapting this technology to utilize it in military operations.

Downloads

Download data is not yet available.

Author Biography

  • Jimmy Flórez-Zuluaga, Fuerza Aérea Colombiana

    MsC. in Technologies of information and communication. Capitan of the Colombian Air Force, Chief of research at Technological Development Center for Defense-CETAD

References

Bian, B., and Moertl, P. M. (2012). Global positioning system accuracy under varying ionospheric conditions for surface Automatic Dependent Surveillance-Broadcast applications. In 12th Integrated Communications, Navigation and Surveillance Conference: Bridging CNS and ATM, ICNS 2012, pp. A31-A318.

https://doi.org/10.1109/ICNSurv.2012.6218374

Chiang, K. W., and Huang, Y. W. (January, 2008). An intelligent navigator for seamless INS/GPS integrated land vehicle navigation applications. Appl. Soft Comput., 8 (1), pp. 722-733.

https://doi.org/10.1016/j.asoc.2007.05.010

Flavio Vismari, L., and Camargo Junior, J. B. (July, 2011). A safety assessment methodology applied to CNS/ATM-based air traffic control system, Reliab. Eng. Syst. Saf., 96 (7), pp. 727-738.

https://doi.org/10.1016/j.ress.2011.02.007

Flavio Vismari L., and Camargo Junior, J. B. (July, 2011). A safety assessment methodology applied to CNS/ATM-based air traffic control system. Reliab. Eng. Syst. Saf., 96, (7), pp. 727-738

https://doi.org/10.1016/j.ress.2011.02.007

Frady, S. (WNC IEEE) (March, 2014). Applications for RTL based Software Defined Radios. [Online]. Available: http://sites.ieee.org/wnc/files/2014/04/IEEE_Frady_SDR_Mar_2014.pdf.

Harmonisation, E. A. T. C., and Programme, A. I., (August, 2002). Eurocontrol Standard Document For Part 2a Transmission of Monoradar Data Target Reports.

Harrison, M. J. (2006). ADS-X the Next Gen Approach for the Next Generation Air Transportation System. ieee/aiaa 25TH Digit. Avion. Syst. Conf.

https://doi.org/10.1109/DASC.2006.313678

International Civil Aviation Organization (ICAO). (2012). Manual on Airborne Surveillance Applications.

International Civil Aviation Organization (ICAO). (September, 2011). ADS-B Implementation And Operations Guidance Document.

Miquel, T.; Mora-Camino, F., and Loscos J. M. (2006). Path stretching and tracking for time-based aircraft spacing at meter fix. In Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference, 1, pp. 411-418.

https://doi.org/10.2514/6.2006-6064

Nolan, M. S. (1998). Fundamentals of Air Traffic Control. Third Edit.

Organización de los Sistemas de Sensores de Vigilancia (OACI). (1998). Manual sobre ensayo de sistemas del radar de vigilancia. Primera Ed.

Organización de Aviación Civil Internacional. (2006). Anexo 10. Telecomunicaciones aeronáutica.

O. R. S. OACI. (2013). Guía de Consideraciones Técnicas Operacionales para la Implantación del ADS-B en la región SAM.

Rees, M. (Head of CNS-EUROCONTROL) (2009). The Eurocontrol Surveillance Strategy. In ENRI International Workshop on ATM/CNS.

https://doi.org/10.1109/TIWDC.2008.4649017

Rushby, J. (1994). Critical System Properties, 43 (2), pp. 189-219.

https://doi.org/10.1016/0951-8320(94)90065-5

Schafer, M.; Strohmeier, M; Lenders, V.; Martinovic, I., and Wilhelm, M. (2014). Demonstration abstract: OpenSky A large-scale ADS-B sensor network for research. In IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, pp. 313-314.

https://doi.org/10.1109/IPSN.2014.6846779

Skolnik, M. I. (1990). Radar Handbook. Second Ed. McGraw-Hill.

Strohmeier, M.; Schafer, M.; Lenders, V., and Martinovic, I. (May, 2014). Realities and challenges of nextgen air traffic management: the case of ADS-B. IEEE Commun. Mag., 52 (5), pp. 111-118.

https://doi.org/10.1109/MCOM.2014.6815901

Tomlin, C. (1998). Hybrid Control of Air Traffic Management System [PhD Dissertation]. California University.

Yamamoto, K. (2014). Air Traffic Management and Systems, vol. 290, pp. 3-14. Tokyo: Springer Japan

https://doi.org/10.1007/978-4-431-54475-3_1

Zhang J., Liu, W., and Zhu, Y. (August, 2011). Study of ADS-B Data Evaluation. Chinese J. Aeronaut, 24 (4), pp. 461-466.

https://doi.org/10.1016/S1000-9361(11)60053-8

Issue

Section

Technology and Innovation

How to Cite

ADS-B Technologies Use and Appropriation at CETAD. (2014). Ciencia Y Poder Aéreo, 9(1), 125-134. https://doi.org/10.18667/cienciaypoderaereo.141