Sistemas aéreos remotamente tripulados em aplicações militares
Uma análise
DOI:
https://doi.org/10.18667/cienciaypoderaereo.792Palavras-chave:
asa rotativa, componentes de rpas, força aérea, operações militares, rpasResumo
Os sistemas de aeronaves remotamente pilotadas de asa rotativa no campo militar tornaram-se aeronaves com aplicação tática em reconhecimento e vigilância de grande utilidade, fator que promoveu o aumento da pesquisa e do desenvolvimento desses sistemas de 2012 até o presente. Uma pesquisa bibliográfica no Scopus identificou 1166 documentos, que foram processados com o software vosViewer, organizando as informações em conceitos básicos e classificação, sistemas rpas e suas aplicações militares. O estudo mostrou que os Estados Unidos lideraram as pesquisas na área, o que pode estar relacionado às implicações da tecnologia no desenvolvimento de múltiplos conflitos armados, e que as Forças Aéreas de cada país foram as principais patrocinadoras ou pesquisadoras no desenvolvimento dessa tecnologia.
Downloads
Referências
Acosta, H., Fuentes, A., Herrera, E. y Márquez, A. (2020). rpas, ae ronaves piloteadas a distancia para contribuir a la inves tigación de delitos y accidentes. Semilla Científica, 1(1), 488-502. https://repositorio.umecit.edu.pa/bitstream/ handle/001/4740/Revista-Semilla-Cient%C3%ADfica 489-503%20-%20copia.pdf?sequence=1&isAllowed=y
Addati, G. A. y Pérez Lance, G. (2014). Introducción a los uav, drones o vant de uso civil [en línea]. Documentos de Tra bajo, Universidad del Cema. https://ucema.edu.ar/ publicaciones/download/documentos/551.pdf
Almeida, A. (2006). Perspectivas de la seguridad aérea en el siglo xxi. Ciencia y Poder Aéreo, 1(1), 22-24. https://doi. org/10.18667/cienciaypoderaereo.94
Altice, F. L., Bromberg, D. J., Dvoriak, S., Meteliuk, A., Pykalo, I., Azbel, L., Islam, Z. y Madden, L. M. (2022). Extending a Li feline to People with hiv and Opioid Use Disorder During the War in Ukraine. The Lancet Public Health, 7(5), e482- e484. https://doi.org/10.1016/S2468-2667(22)00083-4
Angevine, R., Warden, J. K., Keller, R., & Frye, C. (2019). Learning Lessons from the Ukraine Conflict [en línea]. In stitute for Defense Analyses. https://nsiteam.com/ learning-lessons-from-the-ukraine-conflict/
Aslam, M. W. (2011). A Critical Evaluation of American Drone Strikes in Pakistan: Legality, Legitimacy and Prudence. Critical Studies on Terrorism, 4(3), 313-329. https://doi.or g/10.1080/17539153.2011.623397
Ávila-Herrera, C. C. (2017). Drones vs. aeronáutica civil: licen cias para pilotos y su procedimiento. Novum Jus: Revis ta Especializada en Sociología Jurídica y Política, 11(2), 135-165. https://novumjus.ucatolica.edu.co/article/ view/1518
Batiz, R. M. (2014). Drones: la muerte por control remoto. Edi ciones Akal.
Bergen, P. y Tiedemann, K. (2011). Washington’s Phantom War: The Effects of the US Drone Programs in Pakistan. Foreign Affairs, 90(4), 12-18. https://www.jstor.org/ stable/23039602
Bernad Catalá, J. X. (2019). Diseño y fabricación de dron con sistema de seguridad anticolisión mejorado. Universitat Politècnica de València.
Bright, J., Suryaprakash, R., Akash, S. y Giridharan, A. (2021). Optimization of quadcopter frame using generative de sign and comparison with dji F450 drone frame. iop Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/1012/1/012019
Cadavid, E. S. (2018). Los Hermes 900 y 450 de la Fuerza Aérea Colombiana. Tecnología Militar, 40(1), 58-59.
Calcabrini, A., Carrano, J. I., Ubeira, J. I. y Venturo, N. (2015). Controladora electrónica para multirrotores (tesis de grado, Instituto Tecnológico de Buenos Aires).
Calderón, Y. (2020, 4 de enero). Así es el MQ-9 Reaper, el su puesto dron con el que ee.uu. atacó a Soleimani. La fm. https://www.lafm.com.co/internacional/asi-es-el-mq-9-re aper-el-supuesto-dron-con-el-que-eeuu-ataco-soleimani
Caño, A. (2021). La guerra teledirigida de ee.uu. El País. https: //elpais.com/internacional/2011/09/30/actualidad/131 7401034_480630.html
Collins, L. (2018). A New Eastern Front: What the us Army Must Learn from the War in Ukraine [en línea]. Association of the United States Army. https://www.ausa.org/articles/ new-eastern-front-what-us-army-must-learn-war-ukraine
Da Silva Lima, L., Quartier, M., Buchmayr, A., Sanjuan-Del más, D., Laget, H., Corbisier, D., Mertens, J. y Dewulf, J. (2021). Life Cycle Assessment of Lithium-Ion Batteries and Vanadium Redox Flow Batteries-Based Renewable Energy Storage Systems. Sustainable Energy Technol ogies and Assessments, 46. https://doi.org/10.1016/j. seta.2021.101286
Deilamsalehy, H. y Havens, T. C. (2016). Sensor fused three dimensional localization using imu, camera and Lidar [ponencia]. 2016 ieee sensors. Octubre 30-Noviembre 3 de 2016. https://doi.org/10.1109/ICSENS.2016.7808523
Dos Reis, G., Strange, C., Yadav, M. y Li, S. (2021). Lithium-Ion Battery Data and Where to Find It. Energy and ai, 5. https://doi.org/10.1016/j.egyai.2021.100081
Eqbal, M., Fernando, N., Marino, M. y Wild, G. (2021). Deve lopment of a Turbo Electric Distribution System for Remotely Piloted Aircraft Systems. Journal of Aeros pace Technology and Management, 13. https://doi. org/10.1590/jatm.v13.1209
Esposito, M., Crimaldi, M., Cirillo, V., Sarghini, F. y Maggio, A. (2021). Drone and Sensor Technology for Sustain able Weed Management: A Review. Chemical and Bio logical Technologies in Agriculture, 8(1), 1-11. https:// chembioagro.springeropen.com/articles/10.1186/ s40538-021-00217-8
Evarts, E. C. (2015). Lithium Batteries: To the Limits of Lithium. Nature, 526(7575), S93-S95. https://www.nature.com/ articles/526S93a#:~:text=Researchers%20are%20deve loping%20a%20type,powerful%20microcomputer%20 in%20your%20pocket.
Farrow, A. (2016). La guerra con drones como instrumento militar de la estrategia antiterrorista [en línea]. Air & Space Power Journal. https://www.airuniversity.af.edu/ Portals/10/ASPJ_Spanish/Journals/Volume-28_Issue-4/ 2016_4_02_farrow_s.pdf
Fernández Lozano, J. y Gutiérrez Alonso, G. (2016). Aplica ciones geológicas de los drones. Revista de la Socie dad Geológica de España, 29(1), 89-105. https://dialnet. unirioja.es/servlet/articulo?codigo=6806890
Fulghum, D. A. (2002). Global Hawk uavs to Remain Unarmed. Aviation Week & Space Technology, 156(15), 20-20.
Galloy, T. (2022). Arming Ukraine, Understanding the Bene fits and Risks of Arms Transfers [en línea]. Policy Paper cife, (127). https://www.cife.eu/Ressources/FCK/files/ publications/policy%20paper/2022/CIFE_PP_Galloy_ Arming%20Ukraine%20Understanding%20the%20Be nefits%20and%20Risks%20of%20Arms%20Transfers.pdf
García, R. (2011, 23 de diciembre). Aeronaves no tripuladas en Colombia: el ScanEagle [en línea]. Infomil. https:// www.webinfomil.com/2011/12/aeronaves-no-tripuladas en-colombia-el.html?m=1
Garijo Verdejo, D., López Pérez, J. I. y Pérez Estrada, I. (2009). ssii: Control de un vehículo aéreo no tripulado [en línea]. https://eprints.ucm.es/id/eprint/9477/1/documenta cion.pdf
Gonçalves, R. M., Holanda, T. F, Queiroz, H. A. A., Sousa, P. H. G. O. y Pereira, P. S. (2022). Exploring rpas Potentiality Using a rgb Camera to Understand Short Term Variation on Sandy Beaches. catena, 210. https://doi.org/10.1016/j. catena.2021.105949
Goyne, R. (2019). Technology Scaneagle: Australia’s Eye in the Sky over Afghanistan. Sabretache, 60(3), 63-123. https://search.informit.org/doi/10.3316/INFORMIT.71 9536522457576
Hejduk, M. (2015). The Use of Unmanned Aerial Vehicles-Drones Supply Courier. University of Wroclaw.
Hernández, C. S. (2009). Las nuevas doctrinas militares, el es pionaje militar aéreo y la tecnología en la guerra (2001- 2008): de Hanoi a Bagdad ii. Nómadas: Critical Journal of Social and Juridical Sciences, (21), 41-68 https://dialnet. unirioja.es/servlet/articulo?codigo=4732006
Hernández-Narváez, L. D. (2022). Regulación jurídica de los drones: caso colombiano (tesis de grado, Universidad Santo Tomás). Repositorio institucional Usta. http://hdl. handle.net/11634/42887
Ibrahim, H., Ilinca, A. y Perron, J. (2008). Energy Storage Systems — Characteristics and Comparisons. Renew able and Sustainable Energy Reviews, 12(5), 1221-1250. https://doi.org/10.1016/j.rser.2007.01.023
Isorna Llerena, F., Fernández Barranco, A., Bogeat, J. A., Se gura, F. y Andújar, J. M. (2020). Converting a Fixed-Wing Internal Combustion Engine rpas into an Electric Lith ium-Ion Battery-Driven rpas. Applied Sciences, 10(5). https://www.mdpi.com/2076-3417/10/5/1573
Jaimes Grimaldos, S. D. y Cárdenas Lancheros, E. A. (2019). Analizar la tecnología de realidad aumentada (ra) y vir tual (rv) en la instrucción de pilotos en sistema no tri pulados del Comando Aéreo de Combate n.° 2 de Apiay Villavicencio (tesis de especialización, Universidad Na cional Abierta y a Distancia). Repositorio institucio nal Unad. https://repository.unad.edu.co/handle/105 96/34472
Johnston, P. B. y Sarbahi, A. K. (2016). The Impact of US Drone Strikes on Terrorism in Pakistan. International Studies Quarterly, 60(2), 203-219.
Kabierschke Colonia, M. (2004). Caracterización y diseño de hélices y rotores con alta velocidad de punta.
Kardasz, P., Doskocz, J., Hejduk, M., Wiejkut, P. y Zarzycki, H. (2016). Drones and Possibilities of their Using. Journal of Civil & Environmental Engineering, 6(3), 1-7.
Kazimierski, M. A. (2018). Almacenamiento energético frente al inminente paradigma renovable: el rol de las baterías ion-litio y las perspectivas sudamericanas. Letras Ver des, Revista Latinoamericana de Estudios Socioambien tales(23), 108-132.
Kucharczyk, M. y Hugenholtz, C. H. (2021). Remote Sensing of Natural Hazard-Related Disasters with Small Drones: Global Trends, Biases, and Research Opportunities. Re mote Sensing of Environment, 264, 112577. https://doi. org/10.1016/j.rse.2021.112577
Leishman, G. J. (2006). Principles of Helicopter Aerodynamics. Cambridge University Press.
Lobo, D., Patel, D., Morainvile, J., Shekhar, P. y Abichandani, P. (2021). Preparing Students for Drone Careers Using Ac tive Learning Instruction. ieee Access, 9, 126216-126230. https://doi.org/10.1109/ACCESS.2021.3110578
López Crespo, J. (2012). Módulo 17 Hélices. Ediciones Paraninfo.
Moore, S. W. y Schneider, P. J. (2001). A Review of Cell Equal ization Methods for Lithium-Ion and Lithium-Polymer Battery Systems. sae Technical Paper 2001-01-0959. https://doi.org/10.4271/2001-01-0959
Moreno-Licona, D. C. (2012). El derecho internacional frente a la deshumanización de la guerra en el conflicto armado interno en Colombia (tesis de grado, Universidad ces). Repositorio institucional Universidad ces. http://hdl. handle.net/10946/1924
Nicol, C. E., Macnab, C. J. B. y Ramírez Serrano, A. (2008). A Robust Adaptive Neural Network Control for a Quadrotor Helicop ter [ponencia]. Canadian Conference on Electrical and Computer Engineering. Mayo 4-7 de 2008. Niagara Falls, Canadá. http://doi.org/10.1109/CCECE.2008.4564736.
Norhisam, M., Nazifah, A., Aris, I., Wakiwaka, H. y Nirei, M. (2010). Effect of Magnet Size on Torque Characteristic of Three Phase Permanent Magnet Brushless dc Motor [ponencia]. ieee Student Conference on Research and Development (SCOReD). Diciembre 13-14 de 2010. Kuala Lumpur, Ma laysia. http://doi.org/10.1109/SCORED.2010.5704019
Nüesch, T., Elbert, P., Flankl, M., Onder, C. y Guzzella, L. (2014). Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs. Energies, 7(2), 834-856. https://doi. org/10.3390/en7020834
Nvss, S., Esakki, B., Yang, L.-J., Udayagiri, C. y Vepa, K. S. (2022). Design and Development of Unibody Quadcop ter Structure Using Optimization and Additive Manufac turing Techniques. Designs, 6(1). ttps://doi.org/10.3390/ designs6010008
Ortega Sánchez, J. A. (2015). Estudio de la prospectiva tecnoló gica y análisis de patentes para identificar las necesida des específicas del sector civil de los sistemas aereos no tripulados. Quetzal Aeroespacial. https://www.gob.mx/ cms/uploads/attachment/file/209412/35-0432_Com plemento_del_programa_integral_aeroespacial_para_ incrementar_la_competitividad_Parte_1.pdf
Páez López, G. A. (2020). Herramienta de entrenamiento ba sada en funcionamiento neuropsicológico y fisio lógico en operadores de Aeronaves Remotamente Tripuladas Scan Eagle de la Fuerza Aérea Colombia na. Ciencia y Poder Aéreo, 15(1), 39-52. https://doi.org/ 10.18667/cienciaypoderaereo.658
Park, Y.-U., Cho, J.-H. y Kim, D.-K. (2015). Cogging Torque Re duction of Single-Phase Brushless DC Motor with a Ta pered Air-Gap using Optimizing Notch Size and Position. ieee Transactions on Industry Applications, 51(6), 4455- 4463. https://doi.org/10.1109/TIA.2015.2453131
Parker, J. F., Chervin, C. N., Pala, I. R., Machler, M., Burz, M. F., Long, J. W. y Rolison, D. R. (2017). Rechargeable Nickel — 3D Zinc Batteries: An Energy-Dense, Safer Alternative to Lithium-Ion. Science, 356(6336), 415-418. https://doi. org/10.1126/science.aak9
Pozo Espín, D. F. (2010). Diseño y construcción de una platafor ma didáctica para medir ángulos de inclinación usando sensores inerciales como acelerómetro y giroscopio (te sis de grado, Escuela Politécnica Nacional). Repositorio institucional epn. https://biblioteca.epn.edu.ec/cgi-bin/ koha/opac-detail.pl?biblionumber=9877&shelfbrowse_ itemnumber=10256
Price, B. C. (2012). Targeting Top Terrorists: How Leadership Decapitation Contributes to Counterterrorism. Interna tional Security, 36(4), 9-46. https://www.jstor.org/stable/ 41428119
García Ramírez, A. y Tarazona Caro, S. Rediseño de ingeniería de una hélice de paso variable para un aerodeslizador ruso (tesis de grado, Universidad de San Buenaventura). Repositorio institucional usb. http://biblioteca.usbbog. edu.co:8080/Biblioteca/BDigital/36633.pdf
Reineman, B. D., Lenain, L. y Melville, W. K. (2016). The Use of Ship-Launched Fixed-Wing uavs for Measuring the Ma rine Atmospheric Boundary Layer and Ocean Surface Processes. Journal of Atmospheric and Oceanic Technol ogy, 33(9), 2029-2052. https://doi.org/10.1175/JTECH D-15-0019.1
Romero Huertas, J. C. (2019). Determinación de los valores de arrastre y sustentación de las superficies alares de un dron de ala fija (tesis de grado, Escuela Politécnica Na cional). Repositorio institucional epn. http://bibdigital. epn.edu.ec/handle/15000/1794
Serrano, J. R., García-Cuevas, L. M., Bares, P. y Varela, P. (2022). Propeller Position Effects over the Pressure and Friction Coefficients over the Wing of an uav with Distributed Electric Propulsion: A Proper Orthogonal Decomposition Analysis. Drones, 6(2). https://doi.org/10.3390/drones 6020038
Sigalos, A., Papoutsidakis, M., Chatzopoulos, A. y Piromalis, D. (2019). Design of a Flight Controller and Peripherals for a Quadcopter. International Journal of Engineering Applied Sciences and Technology, 4(5), 463-470. http:// doi.org/10.33564/ijeast.2019.v04i05.067
Sizza Moreno, J. F. (2014). Simuladores para entrenamientos en la Fuerza Aérea Colombiana. Ciencia y Poder Aéreo, 9(1), 135-141. https://doi.org/10.18667/cienciaypoderaereo.142
Stehr, N. J. (2015). Drones: The Newest Technology for Preci sion Agriculture. Natural Sciences Education, 44(1), 89- 91. https://doi.org/10.4195/nse2015.04.0772
Thakur, R. (2016). Infrared Sensors for adas and Beyond — Lidar/ Infrared Camera [ponencia]. Conference tu Automotive - adas and Autonomous.
Tello, A. P. (2018). Drones. Relaciones Internacionales, 27(55), 245-268. https://doi.org/10.24215/23142766e050
Tiseira Izaguirre, A. O., García-Cuevas González, L. M., Quin tero Igeño, P. y Varela Martínez, P. (2022). Series Hybridisation, Distributed Electric Propulsion and Bound ary Layer Ingestion in Long-endurance, Small Remote ly Piloted Aircraft: Fuel Consumption Improvements. Aerospace Science and Technology, 120. https://doi.org/ 10.1016/j.ast.2021.107227
Venkatasetty, H. V. y Jeong, Y. U. (2002). Recent Advances in Lithium-Ion and Lithium-Polymer Batteries [ponencia]. Annual Battery Conference on Applications and Advanc es. Enero 18 de 2022. Long Beach, Canadá. http://doi. org/10.1109/BCAA.2002.986391
Villaseñor, E. B. (2016). Cálculo de variables de control pid para drones cuadcopter. Reaxion, 3(1). http://reaxion.utleon. edu.mx/Art_Calculo_de_variables_de_control_PID_ para_Drones_Cuadcopter.html
Xie, Y., He, S., Savvaris, A., Tsourdos, A., Zhang, D. y Xie, A. (2022). Convexification in Energy Optimization of a Hy brid Electric Propulsion System for Aerial Vehicles. Aerospace Science and Technology, 123. http://doi. org/10.1016/j.ast.2022.107509
Zhu, P., Wen, L., Bian, X., Ling, H. y Hu, Q. (2018). Vision Meets Drones: A Challenge. ArXiv. https://doi.org/10.48550/ arXiv.1804.07437
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Escuela de Postgrados de la Fuerza Aérea Colombiana
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaração de cessão de direitos autorais à revista
O autor cede exclusivamente à Revista os direitos de exploração (reprodução, distribuição, comunicação pública e transformação) para explorar e comercializar a obra, no todo ou em parte, em todos os formatos e modalidades de exploração presentes ou futuros, em todas as línguas, por todo o período de vida da obra e pelo mundo inteiro.
Todo o conteúdo publicado na revista científica Ciencia y Poder Aéreo está sujeito à licença de reconhecimento internacional Creative Commons 4.0, cujo texto completo pode ser encontrado em http://creativecommons.org/licenses/by/4.0/
A licença permite que qualquer usuário baixe, imprima, extraia, arquive, distribua e comunique publicamente este artigo, desde que seja dado o devido crédito aos autores: ao(s) autor(es) do texto e a Ciencia y Poder Aéreo, Revista da Escola de Pós-Graduação da Força Aérea Colombiana. Exceto quando for indicado o contrário, o conteúdo deste site será licenciado sob uma licença Creative Commons Attribution 4.0 Internacional.
Para usos de conteúdo não previstos nestas normas de publicação é necessário entrar em contato diretamente com o diretor ou editor da revista através do e-mail cienciaypoderaereo1@gmail.com
A Escola de Pós-Graduação da Força Aérea Colombiana e esta revista não são responsáveis pelos conceitos expressos nos artigos, nem pelos metadados fornecidos ou pelas afiliações que os autores declarem, sendo assim de inteira responsabilidade dos autores.
Licença Creative Commons
Os autores concedem à revista os direitos de exploração (reprodução, distribuição, comunicação pública e transformação) para explorar e comercializar a obra, inteira ou parcialmente, em todos os formatos e modalidades de exploração presentes ou futuras, em todas as línguas, por todo o período de vida da obra e no mundo inteiro.
Todos os conteúdos publicados na revista científica Ciencia y Poder Aéreo estão sujeitos à licença de reconhecimento 4.0 4.0 Internacional de Creative Commons, cujo texto completo pode-se consultar em http://creativecommons.org/licenses/by/4.0/
A licença permite a qualquer usuário baixar, imprimir, extrair, arquivar, distribuir e comunicar publicamente um artigo, desde que seja dado crédito aos autores do trabalho: aos autores do texto e a Ciencia y Poder Aéreo, Revista Científica da Escola de Pós-Graduação da Força Aérea Colombiana. Salvo onde for indicado o contrário, o conteúdo deste site é licenciado sob uma licença Creative Commons Atribución 4.0 internacional.
Para usos de conteúdo não previstos nestas normas de publicação é necessário entrar em contato diretamente com o diretor ou editor da revista através do e-mail cienciaypoderaereo1@gmail.com
A Escola de Pós-Graduação da Força Aérea Colombiana e esta revista não são responsáveis pelos conceitos expressos nos artigos, nem pelos metadados fornecidos ou pelas afiliações que os autores declarem, sendo assim de inteira responsabilidade dos autores.