Projeto de aeronave de combate não tripulada de quinta geração para apoio aéreo próximo

Autores

DOI:

https://doi.org/10.18667/cienciaypoderaereo.693

Palavras-chave:

aeronave não tripulada, apoio aéreo aproximado, furtividade; militar

Resumo

A evolução na concepção de aeronaves de combate foi modificada pela inclusão de novos parâmetros de alta exigência, incluindo as áreas de investigação relacionadas com a aerodinâmica, a furtividade e a otimização dos processos operacionais. O presente artigo contempla o desenho de um Veículo de Combate Aéreo Não Tripulado (UCAV) para a execução de missões de Apoio Aéreo Próximo (CAS) nas próximas décadas. Os resultados obtidos demonstram as capacidades dos UCAV como aeronaves de quinta geração para a substituição de frotas reconhecidas a nível mundial (A-10 Thunderbolt II e Sukhoi Su-25) e, além disso, garante sua utilidade e viabilidade nos futuros ambientes de combate. Da mesma forma, a pesquisa se concentra em uma das variáveis de maior discussão a respeito da sobrevivência no combate aéreo, trata-se da furtividade por fenômenos eletromagnéticos, com a qual se obtiveram valores de Seção Equivalente de Radar (RCS) iguais a -24,18 dBsm ou representáveis numa área de detectabilidade de 0,0038 m2 em configuração limpa, de modo que este valor é inferior ao de aeronaves furtivas como é o Northrop Grumman B-2 Spirit. Finalmente, o projeto permite a operação com peso de descolagem máximo de 61,900 lb e uma carga paga de 11,240 lb que sejam condicionados a uma configuração alar e de estabilizadores para escalas transônicas.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Esteban Morales Aguirre, Universidad Pontificia Bolivariana

    Estudiante de Ingeniería Aeronáutica. Universidad Pontificia Bolivariana. Colombia. Semillero de Investigación en Ingeniería Aeroespacial Rol de investigador: teórico, experimental y escritura.

  • Mateo Duarte García, Universidad Pontificia Bolivariana

    Estudiante de maestría en Energía Universidad Pontificia Bolivariana. Colombia. Semillero de Investigación en Ingeniería Aeroespacial Rol de investigador: teórico, experimental y escritura.

  • Esteban Paniagua García, Universidad Pontificia Bolivariana

    Estudiante de Ingeniería Aeronáutica. Universidad Pontificia Bolivariana. Colombia. Semillero de Investigación en Ingeniería Aeroespacial Rol de investigador: teórico, experimental y escritura.

  • Daniel Enrique Aldana Lopera, Universidad Pontificia Bolivariana

    Estudiante de Ingeniería Aeronáutica. Universidad Pontificia Bolivariana. Colombia. Semillero de Investigación en Ingeniería Aeroespacial Rol de investigador: teórico, experimental y escritura.

  • Javier Mauricio Sabogal Jaramillo, Universidad Pontificia Bolivariana

    Estudiante de Ingeniería Aeronáutica. Universidad Pontificia Bolivariana. Colombia. Semillero de Investigación en Ingeniería Aeroespacial Rol de investigador: teórico, experimental y escritura.

  • Jorge Elias Montoya Vélez, Universidad Pontificia Bolivariana

    Docente de cátedra. Universidad Pontificia Bolivariana. Colombia. Semillero de Investigación en Ingeniería Aeroespacial Rol de investigador: escritura.

  • Juan Pablo Alvarado Perilla, Universidad Pontificia Bolivariana

    Docente de tiempo completo. Universidad Pontificia Bolivariana. Colombia. Semillero de Investigación en Ingeniería Aeroespacial Rol de investigador: teórico y escritura.

Referências

Atique, M. S. A., Barman, S., Nafi, A. S., Bellah, M., & Salam, M. A. (2016, 12 de julio). Design of a fifth generation air superiority fighter. AIP Conference Proceedings, 1754. https://doi.org/10.1063/1.4958444

Airforce Magazine. (2019). B-2 at 30: Improving with Age. https://www.airforcemag.com/PDF/MagazineArchive/Magazine%20Documents/2019/July%202019/0719_B-2%20for%20DR.pdf

Au, T. A., Hoek, P. J., & Lo, E. H. S. (2018). Combat Analysis of Joint Force Options using Agent-Based Simulation. 2018 Military Communications and Information Systems Conference (MilCIS), 1-7. https://doi.org/10.1109/milcis.2018.8574114

Biswas, K. (2020). Military Aviation Principles. Military Engineering, 1. https://doi.org/10.5772/intechopen.87087

Bravo-Mosquera, P. D., Cerón-Muñoz, H. D., Díaz-Vázquez, G., & Martini Catalano, F. (2018). Conceptual design and CFD analysis of a new prototype of agricultural aircraft. Aerospace Science and Technology, 80, 156-176. https://doi.org/10.1016/j.ast.2018.07.014

Chairman of the Joint Chiefs of Staff (CJCS). (2014). Close Air Support (Joint Publication 3-09.3 ed.). Defense Department Intelligence and Security. https://fas.org/irp/doddir/dod/jp3_09_3.pdf

Chatzigeorgiadis, F. & NAVAL POSTGRADUATE SCHOOL MONTEREY CA. (2004). Development of Code for a Physical Optics Radar Cross Section Prediction and Analysis Application. Van Duuren Media.

Chen, S., Yue, K., Hu, B., & Guo, R. (2015). Numerical Simulation on the Radar Cross Section of Variable-Sweep Wing Aircraft. Journal of Aerospace Technology and Management, 7(2), 170-178. https://dx.doi.org/10.5028/jatm.v7i2.416

Chen, W. (2004). The Electrical Engineering Handbook. ELSEVIER Academic Press.

Cidrás-Estévez, J. (2019). Herramienta Informática para el Diseño Conceptual de Aeronaves de Tipo Subsónica y Estudio de las Actuaciones. Universidad de Cádiz. https://rodin.uca.es/xmlui/handle/10498/22567?locale-attribute=es

Correll, J. (2019, 5 diciembre). The Ups and Downs of Close Air Support. Air Force Magazine. https://www.airforcemag.com/article/the-ups-and-downs-of-close-air-support/

Cummings, R. M., Liersch, C. M., Schütte, A., & Huber, K. C. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149

Deskin, W., & Yankel, J. (2002). Development of the F-22 Propulsion System. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 1-10. https://doi.org/10.2514/6.2002-3624

Sathyamoorthy , D. (2015). A Review of Security Threats of Unmanned Aerial Vehicles and Mitigation Steps. The Journal of Defence and Security, 6(1), 81-97. https://www.researchgate.net/publication/282443666_A_Review_of_Security_Threats_of_Unmanned_Aerial_Vehicles_ and_Mitigation_Steps

Dirwan, A. (2020). The Analysis of Fighter Aircraft Require- ment and Pilot Training for Indonesia’s Air Area Security. International Journal of Solid State Technology, 63(3), 1.631-1.632. http://eprints.universitassuryadarma.ac.id/478/1/9_Dirwan.EPrint.pdf

Fields, N. R. (2012). Advantages and challenges of unmanned aerial vehicle autonomy in the Postheroic age [Tesis doctoral. James Madison University]. https://commons.lib.jmu.edu/master201019/205/

Green, J., & Zeckhauser, R. (2019). Thunder Versus Lightning: A Performance and Cost Analysis of the A-10 “Warthog” Versus the F-35 Joint Strike Fighter. Journal of Benefit-Cost Analysis, 10(3), 434-468. https://doi.org/10.1017/bca.2019.27

Ho, O. (2018). Future Air Force Close Air Support Aircraft. The Faculty of the Department of Aerospace Engineering San José State University. https://apps.dtic.mil/sti/pdfs/AD1104495.pdf

Jenn, D. (2019). Radar and laser cross section engineering (3th ed). AIAA Education Series.

James, D. L., & Gouré, D. (2019). The Implications of Fifth-Generation Aircraft for Transatlantic Airpower A Primer. Atlantic Council. https://www.atlanticcouncil.org/wp-content/uploads/2019/10/FINAL-Air-Power-Domain-Report-WEB-1.pdf

Kong, W., Zhou, D., Yang, Z., Zhang, K., & Zeng, L. (2020). Maneuver Strategy Generation of UCAV for within Visual Range Air Combat Based on Multi-Agent Reinforcement Learning and Target Position Prediction. Applied Sciences, 10(15), 5198. https://doi.org/10.3390/app10155198

Liangliang, C., Kuizhi, Y., Weigang, G., & Dazhao, Y. (2016). Integration analysis of conceptual design and stealth-aerodynamic characteristics of combat aircraft. Journal of Aerospace Technology and Management, 8(1), 40-48. https://doi.org/10.5028/jatm.v8i1.514

Lockheed Martin Corporation. (2021). F-22 Raptor Digital, Dominant, Ready. Lockheed Martin Corporation. https://www.lockheedmartin.com/en-us/products/f-22.html

Nordhagen, L. C. (2018). A-10 Adaptive Basing Operations and Applications in Support of SOF. Naval Postgraduate School. https://apps.dtic.mil/sti/citations/AD1069675

Northrop Grumman. (2021). A-10 Thunderbolt II Specifications. Northrop Grumman. https://www.northropgrumman.com/what-we-do/air/a10-thunderbolt/

Rani, C., Modares, H., Sriram, R., Mikulski, D., & Lewis, F. L. (2016). Security of unmanned aerial vehicle systems against cyber-physical attacks. Journal of Defense Modeling and Simulation, 13(3), 331-342. https://doi.org/10.1177/1548512915617252

Raymer, D. P. (2018). Aircraft Design: A Conceptual Approach (Sixth Edition). American Institute of Aeronautics and Astronautics (aiaa).

Sepúlveda-Palacios, E., & Smith, H. (2019a). Conceptual design of a fifth generation unmanned strike fighter. AIAA Sci- tech 2019 Forum. https://doi.org/10.2514/6.2019-0811

Sepúlveda-Palacios, E., & Smith, H. (2019b). Impact of mission requirements on the design of low observable ucav configurations. Aircraft Engineering and Aerospace Technology, 91(10), 1295-1307. https://doi.org/10.1108/AEAT09-2018-0249

Touzopoulos, P., Boviatsis, D., & Zikidis, K. C. (2018). Constructing a 3D model of a complex object from 2D images, for the purpose of estimating its Radar Cross Section (rcs). Journal of Computations & Modelling, 1(1), 15-28.

Watts, B. D. (2013). The Evolution of Precision Strike. Center for Strategic and Budgetary Assessments. https://csbaonline.org/uploads/documents/Evolution-of-Precision-Strike-final-v15.pdf

Yaacoub, J.-P., Noura, H., Salman, O., & Chehab, A. (2020). Security analysis of drones systems: Attacks, limitations, and recommendations. Internet of Things, 11, 100218. https://doi.org/10.1016/j.iot.2020.100218

Publicado

2021-06-01

Edição

Seção

Tecnologia e Inovação

Como Citar

Projeto de aeronave de combate não tripulada de quinta geração para apoio aéreo próximo. (2021). Ciencia Y Poder Aéreo, 16(1), 55-74. https://doi.org/10.18667/cienciaypoderaereo.693