simuladores de vôo: uma revisão
DOI:
https://doi.org/10.18667/cienciaypoderaereo.606Palavras-chave:
aeronave, simuladores de vôo,, plataformas de movimento, FSTD, FAA, EASAResumo
Os simuladores de vuelo permitem realizar manobras de aprendizado que não se realizam real no se podría, e que se pueden analizar de fallas humanas hasta las da aeronave. Este artículo apresenta o desenvolvimento de um projeto de arte para o projeto “Desarrollo y construcción de um entrenador de vôo da aeronave Cessna T-41 para a Escuela Militar de Aviação Marco Fidel Suárez”, financiado por la “Convocatoria para el apoyo a proyectos CTeI para a investigação da Força Pública ”, promovido pelo Ministério de Defesa Nacional. Para o desenvolvimento do artigo você pode realizar uma revisão documental que contem a clasificación, a historia, arquitectura, características, ventajas e aplicaciones dos simuladores de vuelo o dispositivo de entrenamiento de vuelo. Como resultado pode ser obtido quando o programa foi implantado no desenvolvimento de um sistema de distribuição de dados, em vez de um tipo de processo. Se concluísse a informação administrada por este artigo apóia os conceitos básicos para a realização de um simulador de vuelo, dá-lhe a capacidade para a Força Aérea Colombiana no desenvolvimento deste tipo de tecnologias.
Downloads
Referências
Aeronáutica Civil. (2015). RAC 24 Dispositivos simuladores para entrenemiento de vuelo. Recuperado de http://www.aerocivil.gov.co/AAeronautica/Rrglamentacion/RAC/Paginas/Inicio.aspx
Aerosimulators. (2009). Flight Training. Recuperado de http://www.superjetinternational.com/media-center/ssj100-fullflight-simulator-in-venice-achieves-easa-certification/
Aguirre, L., y Guarnizo R., J. (2008). Diseño detallado de un simulador de vuelo dinamico. Bogota D. C.: Universidad de San Buenaventura.
Airbus Helicopters. (2015). Dauphin AS365 N3 / N3+ Full Fligh Simulator. Recuperado de https://www.airbushelicopters.com/website/en/press/Realistic%20simulation%20training%20to%20enhance%20safety%20and%20capabilities%20of%20helicopter%20search%20and%20rescue%20missions_1651.html
Allerton, D. J. (2010). The impact of flight simulatión inaerospace. Recuperado de https://www.aerosociety.com/Assets/Docs/Publications/DiscussionPapers/The_impact_of_flight_simulation_in_aerospace.pdf
https://doi.org/10.1017/S0001924000004231
Almeida, D. (2007). UAV Flight Simulator based on ESA Infrastructure Flight simulation models compliant with SMP standard. Lisboa, Portugal: Universidad Técnica de Lisboa.
Alonso, M. (2006). Diseño de una cabina de vuelo virtual. Barcelona: Universidad Politecnica de Catalunya.
Alonso, M. S. (2006). Diseño de una cabina virtual. España: Universidad Politécnica de Cataluña.
Angelo, J. (2000). The link flight trainer. ASME Landmarks, 12.
Australian Goverment Civil Aviation Safety Authority. (2015). Flight simulators and training devices. Australia: AGCASA.
Barros dos Santos, S., & Oliveira, F. (2011). Longitudinal autopilot controllers test platform hardware in the loop. IEEE International System Conference, 379-386.
https://doi.org/10.1109/SYSCON.2011.5929071
Bernard, M. (October, 2012). Real learning throught flight simulatión: The ABcs of ATDs. FAA Saf. Brief, 8-10.
Bosh, M. T. (2011). Diseño de un simulador de helicóptero. España: Universidad Politécnica de Cataluña.
Chih-Hsien, K., Devaney, J., & Chung-Ming, H. (s.f.). The design of a fuzzy-based adaptive digital controller for a three-degreesof- freedom in-parallel actuated manipulator [for flight simulator]. IEEE, 3, 1328-1332.
Chomachar, A. A., & Azizi, S. (2015). Design of nonlinear control loader system for a flight simulator (a dynamic inversion approach. IEEE, 1-11.
Cristofaro, M. (2014). Elements of computational flight dynamics for complete aircraft. Southampton. UK: University of Southampton.
Davliakos, I., & Papadopoulos, E. (2008). Model-based control of a 6-dof electrohydraulic Stewart-Gough platform,. Mech. Mach. Theory, 43(11), 1385-1400.
https://doi.org/10.1016/j.mechmachtheory.2007.12.002
Dongsu, W., & Hongbin, G. (2007). Adaptive sliding control of six- DOF flight simulator motion platform. Chinese J. Aeronaut, 20(5), 425-433.
https://doi.org/10.1016/S1000-9361(07)60064-8
Dongsu, W., & Hongbin, G. (October, 2007). Adaptive Sliding Control of Six-DOF Flight Simulator Motion Platform. Chinese Aeronaut, 20(5), 294-304.
https://doi.org/10.1016/S1000-9361(07)60064-8
Dongsu, W., Hongbin, G., & Peng, L. (2009). Comparative study on dynamic identification of parallel motion platform for a novel flight simulator. IEEE, 2232-2237.
Dummer, G. (1949). Aids to training, the design of radar synthetic training devices for the R.A.F. Proc IEE - Part III Radio Commun, 96(40), 101-115.
https://doi.org/10.1049/pi-3.1949.0021
EASA. (1 de octubre de 2015). EASA Qualifed FSRDs. Recuperado de https://lisstdis.easa.europa.eu/eqstdis
Education IT. (2017). Sistemas operativos más usados. Centro de capacitación y desarrollo profesional.
Elbit System Ltd. (2011). Aircraft Mission Training Center (MTC).
Federal Aviation Administration. (2014). AC 61-136A. Recuperado de https://www.faa.gov/search/?q=AC+61-136A+-+Federal+Aviation+Administration
Federal Aviation Administration. (2014). Training & Testing. Recuperado de https://www.faa.gov/training_testing/
Flight Safety International Simulation. (2011). Flight Simulation Training Systems. Broken Arrow.
Fountain, P. J. (2002). USA Patente n.º US20030054324A1.
Gohl, F., & Leutenegger, S. (2009). Aerodynamic performance and stability simulation of different flying wing model airplane configurations.
Gusarov, R. (2011). Sukhoi SuperJet. Recuperado de http://www.ruaviation.com/news/2011/11/22/632/
Haward, D. M. (1910). The Sanders "Teacher". Flight, II(50), 1006- 1007. Recuperado de https://www.flightglobal.com/pdfarchive/view/1910/1910%20-%201009.html
Inaba, Y., Shimada, Y., Uchiyama, K., Abe, K., Ishikawa, Y., Sugimoto, T., & Abe, A. (2006). Development of flight simulator for humanpowered aircraft the road towards a world record. Sice Icase.
https://doi.org/10.1109/SICE.2006.314760
Jirgl, M., Boni, J., & Jaolovecky, R. (2015). The identification possibilities of the measured parameters of an aircraft model and pilot behavior model on the flight simulator. IEEE Xplore, 1-5.
https://doi.org/10.1109/MILTECHS.2015.7153726
Koekebakker, S. (2001). Model Based Control of a Flight Simulator Motion System,. Netherlands: Technische Universiteit Deltf.
Kovacova, J., & Koblen, I. (2012). Selected information on flight simulators - main requirements, categories and their development, production and using for flight crew training in the both Slovak Republic and Czech Republic conditions. Incas Bulletin, 4, 73-86.
https://doi.org/10.13111/2066-8201.2012.4.3.7
Lawn, P. (1998). The Enhancement of a Flight Simulator System with Teaching and Research Applications. Texas: University Concordia.
Lawn, P. (1998). The enhancement of a flight simulator system with teaching and reserarch applications. Canada: University Montreal.
Marodi, A. (2002). An improved evaluation method for airplane simulator motion cueing. University of Pittsburgh.
Mendoza, M., Vivas, V., & Rodríguez, H. (2014). Mechatronic Design, Dynamic Modeling and Results of a Satellite Flight Simulator for Experimental Validation of Satellite Attitude Determination and Control Schemes in 3-Axis. Journal of Applied Research and Technology, 12(3), 370-383.
https://doi.org/10.1016/S1665-6423(14)71619-0
Microsoft. (2015). Visual C# Language. Recuperado de https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
Monsarrat, B., & Gosselin, M. (2003). Workspace analysis and optimal design of a 3-leg 6-DOF parallel platform mechanism. IEEE, 19(6), 954-956.
https://doi.org/10.1109/TRA.2003.819603
Muñoz, M. (2012). Manuel de vuelo. Recuperado de www.manualdevuelo. com
NASA. (2012). SimLabs: Advancing the science of flight. Recuperado de http://www.simlabs.arc.nasa.gov
Odegard, R., Milenkovic, Z., & Buttacoli, M. (2014). Model-based GN&C simulation and flight software development for Orion missions beyond LEO. IEEE Aerospace Conference, 1-13.
https://doi.org/10.1109/AERO.2014.6836230
Odegard, R., Sliwinski, K., King, T., & Hart, J. (2011). Configuring the Orion Guidance, Navigation, and Control flight software for automated sequencing. IEEE Aerospace Conference, 1-13.
https://doi.org/10.1109/AERO.2011.5747472
Pancoe, E. G. (2002). Motión system for an aircraft flight shmulatur.
Pradipta, J., Klunder, M., Weickgenannt, M., & Sawodry, O. (2013). Development of a pneumatically driven flight simulator Stewart platform using motion and force control. IEEE. doi: 10.1109/AIM.2013.6584085.
https://doi.org/10.1109/AIM.2013.6584085
Ray, L. P. (2000). Brief history of flight simulation. SimTec, 11-17.
Reddy, B., & Arun, P. (2013). Development of real models for aircraft simulator. IEEE Xplore, 52-53.
https://doi.org/10.1109/iMac4s.2013.6526383
Reinholtz, K. (1999). Applying simulation to the development of spacecraft flight software. IEEE Aerospace Conference, 1, 469- 476.
https://doi.org/10.1109/AERO.1999.794353
Rodríguez, N. J. (2014). Generalidades de los simuladores de vuelo. Tecnoesufa, 21-28.
Rodríguez, R., Sampaio, R., Aguiar, A., & Buttacoli, M. (2014). FVMS Software-in-the-Loop Flight Simulation Experiments: Guidance, Navigation and Contro. Joint Conference on Robotics, 223-228.
https://doi.org/10.1109/SBR.LARS.Robocontrol.2014.48
Schmaltz, J. (2010). Flight training simulation. The flight safety multiplie, 21(4), 1-8.
Sizza, J. (2014). Simuladores para entrenamientos en la Fuerza Aérea Colombiana. Ciencia y Poder Aéreo, 9(1), 135-141.
https://doi.org/10.18667/cienciaypoderaereo.142
Slob, J. (2008). State-of-the-Art driving simulators, a literature survey. Eindhoven: University of Technology.
Songshan, H., Zongxia, W., & Yaoxing, S. (2015). Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator. Chinese J. Aeronaut, 28(1), 294-304.
https://doi.org/10.1016/j.cja.2014.12.025
Statcounter. (2017). Market Share Worldwide. Recuperado de https://statcounter.com/
Tan, C., Chen, W., Van den Boomen, G., & Rauterberg, M. (2010). Application of automation for low cost aircraft cabin simulator. Control Autom Syst.
Virtual Insect Flight Simulator (VIFS): A software testbed for insect flight. (2001). Virtual insect flight simulator (VIFS): a software testIEEE International Conference on Robotics and Automation, 4, 3885-3892.
Vix. (2017). Vix.com. ¿Listo para despegar? Los mejores simuladores de vuelo civiles. Recuperado de https://www.vix.com/es/btg/gamer/62883/listo-para-despegar-los-mejores-simuladores-de-vuelo-civiles
Weingarten, N. (2005). History of in-flight simulation & flying qualities research at calspan. AIAA Journal of Aircraft, 42(2), 290- 298.
https://doi.org/10.2514/1.4663
X-plane. (2017). FAA-Certified X-Plane. Recuperado de https://www.x-plane.com/pro/certified/
Zazula, A., Myszor, D., Antemijczuk, O., & Cyran, K. (2013). Flight simulators - From electromechanical analogue computers to moderm laboratory of flying. Adv. Sci. Techol, 7(17), 51-55.
https://doi.org/10.5604/20804075.1036998
Zhang, Y., & Yao, Y. (2009). Virtual insect flight simulator (VIFS): A software testbed for insect flight. International Conference on Measuring Technology and Mechatronics Automation, 841- 844.
Downloads
Publicado
Edição
Seção
Licença
Declaração de cessão de direitos autorais à revista
O autor cede exclusivamente à Revista os direitos de exploração (reprodução, distribuição, comunicação pública e transformação) para explorar e comercializar a obra, no todo ou em parte, em todos os formatos e modalidades de exploração presentes ou futuros, em todas as línguas, por todo o período de vida da obra e pelo mundo inteiro.
Todo o conteúdo publicado na revista científica Ciencia y Poder Aéreo está sujeito à licença de reconhecimento internacional Creative Commons 4.0, cujo texto completo pode ser encontrado em http://creativecommons.org/licenses/by/4.0/
A licença permite que qualquer usuário baixe, imprima, extraia, arquive, distribua e comunique publicamente este artigo, desde que seja dado o devido crédito aos autores: ao(s) autor(es) do texto e a Ciencia y Poder Aéreo, Revista da Escola de Pós-Graduação da Força Aérea Colombiana. Exceto quando for indicado o contrário, o conteúdo deste site será licenciado sob uma licença Creative Commons Attribution 4.0 Internacional.
Para usos de conteúdo não previstos nestas normas de publicação é necessário entrar em contato diretamente com o diretor ou editor da revista através do e-mail cienciaypoderaereo1@gmail.com
A Escola de Pós-Graduação da Força Aérea Colombiana e esta revista não são responsáveis pelos conceitos expressos nos artigos, nem pelos metadados fornecidos ou pelas afiliações que os autores declarem, sendo assim de inteira responsabilidade dos autores.
Licença Creative Commons
Os autores concedem à revista os direitos de exploração (reprodução, distribuição, comunicação pública e transformação) para explorar e comercializar a obra, inteira ou parcialmente, em todos os formatos e modalidades de exploração presentes ou futuras, em todas as línguas, por todo o período de vida da obra e no mundo inteiro.
Todos os conteúdos publicados na revista científica Ciencia y Poder Aéreo estão sujeitos à licença de reconhecimento 4.0 4.0 Internacional de Creative Commons, cujo texto completo pode-se consultar em http://creativecommons.org/licenses/by/4.0/
A licença permite a qualquer usuário baixar, imprimir, extrair, arquivar, distribuir e comunicar publicamente um artigo, desde que seja dado crédito aos autores do trabalho: aos autores do texto e a Ciencia y Poder Aéreo, Revista Científica da Escola de Pós-Graduação da Força Aérea Colombiana. Salvo onde for indicado o contrário, o conteúdo deste site é licenciado sob uma licença Creative Commons Atribución 4.0 internacional.
Para usos de conteúdo não previstos nestas normas de publicação é necessário entrar em contato diretamente com o diretor ou editor da revista através do e-mail cienciaypoderaereo1@gmail.com
A Escola de Pós-Graduação da Força Aérea Colombiana e esta revista não são responsáveis pelos conceitos expressos nos artigos, nem pelos metadados fornecidos ou pelas afiliações que os autores declarem, sendo assim de inteira responsabilidade dos autores.