Design sustentável de uma estrutura de nanossatélites do tipo CubeSat como plataforma de teste modular
DOI:
https://doi.org/10.18667/cienciaypoderaereo.519Palavras-chave:
Plataforma modular; Design conceitual; Design sustentável; CubeSat; Nanossatélites; Desenho por fatores; Banco de ensaioResumo
Este artigo busca contribuir para o desenvolvimento de tecnologias próprias e a avaliação e seleção de tecnologias integradas necessárias para os processos de apropriação tecnológica no campo aeroespacial. O problema abordado surge da falta de plataformas modulares e sistemas de teste de baixo custo permitindo o desenvolvimento experiencial de sistemas de satélites e a realização de simulações. Portanto, a proposta de uma plataforma modular e escalável do padrão 1U CubeSat é apresentada como resultado final. O processo de desenho desta plataforma, sob critérios sustentáveis, contribui para o desenvolvimento de equipamentos de baixo custo que minimizam seu impacto ambiental e podem ser facilmente adquiridos por grupos e centros de pesquisa interessados na disseminação de tecnologias espaciais na Colômbia. A metodologia de design sustentável, a definição dos princípios de design e o design conceitual, materializados com a aplicação do método Desdobramento da Função Qualidade (QFD), a Teoria da Solução Inventiva de Problemas (TRIZ), o Design para Fabricação (DFM), a Capacidade de Montagem (DFA), o Impacto Ambiental (DFE), a confiabilidade e a avaliação da segurança são relevantes para atender aos padrões exigidos pelo CubeSat. Por último, vários modelos são propostos para a fabricação de plataformas de testes com diferentes materiais como protótipos 3D em papel, ABS, madeira MDF e alumínio. Todas estas são estruturas de satélite de pequena escala projetadas e construídas com materiais de baixo custo. Os desenhos propostos permitem testar os sistemas a bordo e a resistência da integração de montagens e materiais em escala laboratorial, para que o desenvolvimento desse tipo de tecnologia espacial seja divulgado pelos grupos de pesquisa ou empresas interessadas.
Downloads
Referências
Alvarez, J., & Walls, B. (2016). Constellations, clusters, and communication technology: Expanding small satellite access to space. 2016 IEEE Aerospace Conference. Big Sky. https://doi.Org/10.0.4.85/AERO.2016.7500896
Ampatzoglou, A., & Kostopoulos, V. (2018). Design, analysis, optimization, manufacturing, and testing of a 2U CubeSat. International Journal of Aerospace Engineering, 2018, 1-15. https://doi.org/10.1155/2018/9724263
Antunes, S. (2012). Surviving orbit the DlYway. O’Reilly Media.
Araya, F. (2014). Modificación de la estructura principal de un nanosatélite. esss Conference &ansys Users Meeting, esss &ANSYS Users.
Báez, A. A., & Rodríguez, O. A. (2010). Diseño de los sistemas estructural, de alimentación de energía solar y construcción de prototipo estructural de un pico satélite para el C.I.E. de la ESPE. [Engineer thesis, Universidad de las Fuerzas Armadas espe]. Repositorio Institucional de la Universidad de las Fuerzas Armadas ESPE.
Boothroyd, G. (2005). Assembly automation and product design. Taylor & Francis.
Bouwmeester, J., & Guo, J. (2010). Survey of worldwide pico-and nanosatellite missions, distributions and subsystem technology. Acta Astronaut, 67(1-8), 854-862.
California Polytechnic State University [CalPoly]. (2009). Cubesat design specification. Calif. Polytech. State, 8651,22.
Camacho, F. (2016). Diseño óptimo de estructuras satelitales [PhD thesis, Universidad Nacional Autónoma de México]. Repositorio digital de la Facultad de Ingeniería, UNAM.
Carnahan, J. (2014). Cubesat design specification. Calif. Polytech. State, (SLO 4).
Cortes-García, E. D., Acuña-Mateus D. F., & Pachón-Pinilla, J. A. (2019). Diseño, construcción y experimentación de un satélite de pequeña escala. Facultad de Ingeniería, Universidad Nacional de Colombia.
Díaz-González, F. A., Quintero-Torres, S. V., Triana-Correa, J. S., Morón-Hernández, D. C. (2014). Aproximación a los sistemas de percepción remota en satélites pequeños. Fondo de Publicaciones Universidad Sergio Arboleda.
Gallegos, R. A. (2009). Diseño e ingeniería asociada a lo estructura de un Picosatélite [Engineer thesis, Universidad Autónoma de Nuevo León]. Repositorio digital de la Facultad de Ingeniería, UNAM.
Gavrilovich I., Krut, S., Gouttefarde, Pierrot, F., & Dusseau, L. (2014). Test bench for nanosatellite attitude determination and control system ground tests. 4S: Small Satellites Systems and Services Symposium. National Centre for Space Studies, France.
González-Silva, M. A., & Paredes-Mera, F. J. (2010). Diseño y construcción de un banco de pruebas de vibraciones para la optimización del picosatelite hexasat del centro de investigación espacial, cíe [Engineer thesis, Universidad de las Fuerzas Armadas espe]. Repositorio Institucional de la Universidad de las Fuerzas Armadas ESPE.
Herrera-Arroyave, J. E. (2015). Diseño estructural de un sistema CubeSat con recubrimiento de barrera [Master’s thesis, Universidad Autónoma de Nuevo León]. Repositorio Académico Digital UANL.
Herrera-Arroyave, J. E., Santillán-Gutiérrez, S. D., Zambrano-Robledo, P. C., & Ferrer-Pérez, J. A. (2015). Proceso de diseño de una estructura nanosatelital CubeSat. XI Congreso Internacional sobre Innovación y Desarrollo Tecnológico. ieee Sección Morelos.
Herrera, J., Ledezma-Ramírez, D., Flernández, G., Ferrer, J., Zambrano, P., & Bermúdez, B. (2015). Diseño estructural de un sistema CubeSat con recubrimiento de barrera térmica. Vil Congreso Internacional de Ingeniería Mecánica. Facultad de Ingeniería, Universidad Nacional de Colombia.
Louzguine, D. V., Inoue, A., Saito, M., & Waseda, Y. (2000). Eco-indicator99 Manual for Designers. Technical Report, Ministry of Flousing, Spatial Planning and the Environment, European Union.
Maropoulos, P. G., & Ceglarek, D. (2010). Design verification and validation in product lifecycle. CIRP Annals-Manu-facturing Technology, 59(2), 740-759.
Medina, D. P. (2018). Diseño y manufactura de la estructura de un CubeSat 2U [PhD thesis, Universidad Nacional Autónoma de México]. Repositorio digital de la Facultad de Ingeniería, UNAM.
Meissner, D. (2019). A three degrees of freedom test-bed for nanosatellite and cubesat attitude dynamics, determination, and control [B.S. Aerospace Engineering thesis, United States Naval Academy]. Institutional Archive of the Naval Postgraduate School, United States of America.
Mier-Flicks, F. (2017). Space-craft charging and attitude control characterization of electrospray thrusters on a magnetically levitated testbed [PhD thesis, Massachusetts Institute of Technology], mit Libraries.
Mooij, E., & Ellenbroek, M. FI. M. (2007). Multi-functional guidance, navigation, and control simulation environment. aim Modeling and Simulation Technologies Conference and Exhibit. American Institute of Aeronautics and Astronautics.
Osdol, T. C., Dorsey, C., Fledlund, J., Floye, T., Jacobs, 0., Klar-reich-Giglio, K., Martin, E., Ruiz, M., Schlesselmann, M.,& Singh, Z. (2013). Design, fabrication, and analysis of a 3U Cubesat platform [Engineer thesis, Santa Clara University]. Santa Clara University Scholar Commons.
Pierlot, G. (2009). Flight system configuration and structural analysis [Master’s theis, University of Liege]. Institutional Repository of the University of Liege.
Poghosyan, A., & Golkar, A. (2016). Progress in aerospace sciences cubesat evolution: Analyzing cubesat capabilities for conducting science missions. Prog. Aerosp. Sci., (September), 1-25.
Radhakrishnan, R., Edmonson, W. W., Afghah, F., Rodriguez-Osorio, R. M., Pinto, F., & Burleigh, C. S. (2016). Survey of inter-satellite communication for small satellite systems: Physical layer to network layer view, ieee Communications Surveys & Tutorials, 18(4), 2442-2473. https://doi.org/10.1109/COMST.2016.2564990
Rodríguez, G. W. (2017). Diseño n: gestión tecnológica para el diseño de proyectos de ingeniería. Escuela de Postgrados de la Fuerza Aérea Colombiana, https://doi.org/10.18667/9789589940693
Romero, D., & Rodríguez, H. (2005). Diseño y construcción de un nanosatélite. Technical report. Escuela Superior de Ingeniería Mecánica y Eléctrica, Mexico.
Ulrich, K. T., & Eppinger, S. D. (2015). Product design and development McGraw-Hill Education.
Sandvik, K. (2012). Development of Composite and Polymer Material CubeSat Structure with focus on Materials. Technical report, Norwegian University of Science and Technology.
Tirado, G., & Rodríguez, G. W. (2016). Modelo pi. Modelo para la producción intelectual, una propuesta para las instituciones de educación superior. Escuela de Postgrados de la Fuerza Aérea Colombiana, https://doi.org/10.18667/9789589940679
Tsarev (2013). Smart solutions: Multi-agent technology for real-time enterprise resource management, ieee/acis 12th International Conference on Computer and Information Science (icis). https://doi.org/10.1109/ICIS.2013.6607827
Ullman, D. G. (2010). The mechanical design process. McGraw-Hill.
Universidad del Pais Vasco [ehu/upv]. (2017). Informe de vigilancia y competitividad ambiental en el sector de la máquina herramienta Nerea Sópela na. Basque Ecode-sign Center, ehu/upv.
Downloads
Publicado
Edição
Seção
Licença
Declaração de cessão de direitos autorais à revista
O autor cede exclusivamente à Revista os direitos de exploração (reprodução, distribuição, comunicação pública e transformação) para explorar e comercializar a obra, no todo ou em parte, em todos os formatos e modalidades de exploração presentes ou futuros, em todas as línguas, por todo o período de vida da obra e pelo mundo inteiro.
Todo o conteúdo publicado na revista científica Ciencia y Poder Aéreo está sujeito à licença de reconhecimento internacional Creative Commons 4.0, cujo texto completo pode ser encontrado em http://creativecommons.org/licenses/by/4.0/
A licença permite que qualquer usuário baixe, imprima, extraia, arquive, distribua e comunique publicamente este artigo, desde que seja dado o devido crédito aos autores: ao(s) autor(es) do texto e a Ciencia y Poder Aéreo, Revista da Escola de Pós-Graduação da Força Aérea Colombiana. Exceto quando for indicado o contrário, o conteúdo deste site será licenciado sob uma licença Creative Commons Attribution 4.0 Internacional.
Para usos de conteúdo não previstos nestas normas de publicação é necessário entrar em contato diretamente com o diretor ou editor da revista através do e-mail cienciaypoderaereo1@gmail.com
A Escola de Pós-Graduação da Força Aérea Colombiana e esta revista não são responsáveis pelos conceitos expressos nos artigos, nem pelos metadados fornecidos ou pelas afiliações que os autores declarem, sendo assim de inteira responsabilidade dos autores.
Licença Creative Commons
Os autores concedem à revista os direitos de exploração (reprodução, distribuição, comunicação pública e transformação) para explorar e comercializar a obra, inteira ou parcialmente, em todos os formatos e modalidades de exploração presentes ou futuras, em todas as línguas, por todo o período de vida da obra e no mundo inteiro.
Todos os conteúdos publicados na revista científica Ciencia y Poder Aéreo estão sujeitos à licença de reconhecimento 4.0 4.0 Internacional de Creative Commons, cujo texto completo pode-se consultar em http://creativecommons.org/licenses/by/4.0/
A licença permite a qualquer usuário baixar, imprimir, extrair, arquivar, distribuir e comunicar publicamente um artigo, desde que seja dado crédito aos autores do trabalho: aos autores do texto e a Ciencia y Poder Aéreo, Revista Científica da Escola de Pós-Graduação da Força Aérea Colombiana. Salvo onde for indicado o contrário, o conteúdo deste site é licenciado sob uma licença Creative Commons Atribución 4.0 internacional.
Para usos de conteúdo não previstos nestas normas de publicação é necessário entrar em contato diretamente com o diretor ou editor da revista através do e-mail cienciaypoderaereo1@gmail.com
A Escola de Pós-Graduação da Força Aérea Colombiana e esta revista não são responsáveis pelos conceitos expressos nos artigos, nem pelos metadados fornecidos ou pelas afiliações que os autores declarem, sendo assim de inteira responsabilidade dos autores.