Design, Construction, Evaluation and Comparison of Antennas for Reception of NOAA Signals
DOI:
https://doi.org/10.18667/cienciaypoderaereo.810Keywords:
RTL-SDR, APT, NOAA19 satellite, meteorological imagesAbstract
The objective of this article is to design, build, test, and compare the performance of six antennas (Turnstile, QHF, double-cross, Moxon, V-dipole, and Eggbeater) used for receiving APT meteorological images transmitted from the NOAA-19 satellite in an urban environment. The process follows a four-phase methodology: research, tuning system development, design and simulation, construction, and testing. During the research phase, fundamental concepts such as RTL-SDR, NOAA satellites, and the APT format for image transmission are explored. Subsequently, the development of the tuning system involves the use of programs such as SDRSHARP and WXtoImg to receive and decode the APT signal. The next phase encompasses the design, simulation, and construction of the antennas, with the selection of noaa satellites. Virtual tools are employed to calculate dimensions and parameters, followed by the assembly of the antenna designs. Tests are conducted in open spaces, aligning with the satellite orbits, to receive images. Finally, the results are evaluated in terms of image resolution and audio power to determine the most suitable antenna arrays for this type of communication. The Moxon antenna emerged as the best-performing, recovering images with resolutions of 1.94 megapixels, while the QHF antenna exhibited the highest power reception at 1.9 W. The V-dipole, QHF, and Eggbeater antennas demonstrated the best coupling with the transmission line, achieving low reflection coefficients of 0.16. In conclusion, it is established that in urban environments, the Moxon and QHF antennas effectively receive APT images.
Downloads
References
Álvarez-Busani, C. (2012). Diseño y construcción de una antena double cross para recepción de imágenes procedentes de satélites de órbita polar (master dissertation, Universidad Politécnica de Cataluña). https://tinyurl.com/mwdv2mye
Balanis, C. A. (2005). Antenna Theory: Analysis and Design (3rd ed.). Wiley.
Blazevic, Z. & Skiljo, M. (2011). Helical Antennas in Satellite Radio Channel. Advances in Satellite Communications (M. Karimi & Y. Labrador, eds.). InTechOpen. https://doi.org/10.5772/21833
Bosquez, C. (2016). System for Receiving NOAA Meteorological Satellite Images using Software Defined Radio [paper]. 2016 IEEE andescon. Arequipa, Perú, 19-21 October 2016. https://doi.org/10.1109/ANDESCON.2016.7836233
Cimino-Quiñones, L., Stable-Sánchez, Y. & Valdés-Abreu, J. C. (2015). Antena moxon para estaciones terrenas de satélites meteorológicos de órbita polar. Ingeniería Electrónica, Automática y Comunicaciones, 36(1), 79-94.
Hauer, L.-C., Fexer, S., Smolko, A., Struss, M., Solmaz, P., Munzel, T. & Thienel, T.-H. (2018). Mobile Ground Station for CubeSat Operations [en línea]. https://tinyurl.com/3vpvysnz
Jain, A., Chavan, P., Maradiya, P. & Rathod, K. (2018). Performance Investigation of Dipole and Moxon Antennae for VHF Communication. Progress in Advanced Computing and Intelligent Engineering (K. Saeed, N. Chaki, B. Pati, S. Bakshi & D. Prasad Mohapatra, eds.). Springer.
Mahmood, S., Mushtaq, M. T. & Jaffer, G. (2016). Cost Efficient Design Approach for Receiving the NOAA Weather Satellites Data. 2016 ieee Aerospace Conference. Big Sky, Montana, USA, 05-12 March 2016. https://doi.org/10.1109/AERO.2016.7500854
Martes, G. (2008). Double Cross — A NOAA Satellite Downlink Antenna. https://www.qsl.net/py4zbz/DCA.pdf
Patil, C., Chavan, T. & Chaudhari, M. (2016). Hardware and Software Implementation of Weather Satellite Imaging Earth Station. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Jaipur, India, 21-24 September 2016. https://doi.org/10.1109/ICACCI.2016.7732122
Peralta, D. J. M., Dos Santos, D. S., Tikami, A., Dos Santos, W. A. & Pereira E. W. R. (2018). Satellite Telemetry and Image Reception with Software Defined Radio Applied to Space Outreach Projects in Brazil. Anais da Academia Brasileira de Ciencias, 90(3), 3175-3184. https://doi.org/10.1590/0001-3765201820170955
Ramos-Rosero, A. G. & Noboa-Cabrera, L. N. (2017). Diseño e implementación de un prototipo para recepción de señales satelitales para obtención de imágenes meteorológicas del sistema de satélites NOAA (National Oceanic and Atmospheric Administration) usando radio definido por software (tesis de grado, Universidad Politécnica Salesiana). Repositorio institucional. https://tinyurl.com/ykjdh8a5
Rojas Molina, R.D. (2019). Diseñar un prototipo para recepción de imágenes APT (Automatic Picture Transmission) del sistema satelital NOAA (National Oceanic and Atmospheric Administration) usando RTL-SDR (tesis de maestría, Universidad Israel). Repositorio institucional UIsrael. https://tinyurl.com/jmjh8j7v
Suarez-Fajardo, C.A., Ariza-Pulido, J. J., Mejía-Serrano, S. E. & Puerto-Leguizamón, G. A. (2017). Antena de placa suspendida con polarización circular y sentido de giro configurable. inge cuc, 16(1), 156-170. http://doi.org/10.17981/ingecuc.16.1.2020.011
Ta, S. X., Park, I. & Ziolkowski, R. W. (2015). Crossed Dipole Antennas: A Review. ieee Antennas and Propagation Magazine, 57(5), 107-122. https://doi.org/10.1109/MAP.2015.2470680
Tsai, L. C., Tien, M. H., Chen, G.H. & Zhang, Y. (2014). HF radio angle-of-arrival measurements and ionosonde positioning. Terrestrial, Atmospheric and Oceanic Sciences, 25(3), 401-413. https://doi.org/10.3319/TAO.2013.12.19.01(AA)
Velasco, C. & Tipantuña, C. (2017). Meteorological Picture Reception System using Software Defined Radio (SDR). 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). Salinas, Ecuador, 16-20 October 2017. https://doi.org/10.1109/ETCM.2017.8247551
Witvliet, B. A., Van Maanen, E., Bentum, M. J., Slump, C. H. & Schiphorst, R. (2015). A novel Method for the Evaluation of Polarization and Hemisphere Coverage of HF Radio Noise Measurement Antennas. 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC). Dresden, Germany, 6-22 August 2015. https://doi.org/10.1109/ISEMC.2015.7256174
Published
Issue
Section
Categories
License
Copyright (c) 2024 Escuela de Postgrados de la Fuerza Aérea Colombiana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Assignment of Copyrights
Authors assign Ciencia y Poder Aéreo journal the exclusive rights (reproduction, distribution, public communication, and transformation) to exploit and commercialize their work, in whole or in part, in all the formats and modalities of present or future exploitation, in all languages, throughout the life of the work and throughout the world.
All contents published in Ciencia y Poder Aéreo journal are licensed under a Creative Commons Attribution 4.0 International License, whose complete information is available at http://creativecommons.org/licenses/by/4.0/
Under the terms of this license, users are free to download, print, extract, archive, distribute and publicly communicate the content of articles, provided that proper credit is granted to authors and Ciencia y Poder Aéreo, scientific journal of the Graduate School of the Colombian Air Force. Except when otherwise indicated, this site and its contents are licensed under a Creative Commons Attribution 4.0 International License.
For other uses not considered under this license it is required to contact the Director or the Editor of the journal at the e-mail address cienciaypoderaereo1@gmail.com.
The Graduate School of the Colombian Air Force and this publication are not responsible for the concepts expressed in the articles, including the metadata or the affiliation stated by authors. This is the full responsibility of the authors.