Battery Autonomy Validation Methodology for a Tactical uav

Authors

DOI:

https://doi.org/10.18667/cienciaypoderaereo.791

Keywords:

Autonomy, Autopilot, Battery, Capacity, Energy consumption, Flight log

Abstract

Based on the knowledge obtained during the development of the project “Design of an unmanned aerial vehicle (UAV) for surveillance operations”, developed by the Colombian Aeronautical Industry Corporation, this research article was prepared. It describes the verification of a methodology proposed in order to ensure the correct selection and subsequent validation of a battery that meets the autonomy requirements of a 5 kg uav. Following the stipulations of this methodology, an analysis of the theoretical electrical consumption (ELA) of the UAV, in the different phases of the mission, was carried out and the operational and energy requirements of the system were established, which became a design challenge due to the need to find an efficient relationship between the weight and the flight time of the UAV. Based on the information collected, the UAV battery was selected and validated both on the ground and in flight through operational and discharge tests, simulating the consumption profile, resulting in the fulfillment of the autonomy requirements, with a flight time greater than 60 minutes and 20% safety. It is guaranteed that the UAV performs its mission safely and with enough time to perform landing maneuvers when energy consumption is 80%. It is demonstrated that the implemented methodology guaranteed the correct selection and validation of the battery required by the 5 kg UAV.

Downloads

Download data is not yet available.

References

Abeywickrama, H. V., Jayawickrama, B. A., He, Y. y Dutkiewicz, E. (2018). Empirical Power Consumption Model for UAVs [ponencia]. IEEE 88th Vehicular Technology Conference (VTC-Fall). Chicago, Estados Unidos. Agosto 27-30 de 2018. https://doi.org/10.1109/VTCFall.2018.8690666

American Society for Testing and Materials (ASTM). (2013). Standard Guide for Aircraft Electrical Load and Power Source Capacity Analysis. https://www.astm.org/f2490-05e01.html

ArduPilot. (2021a). UAV Log Viewer. https://plot.ardupilot.org/#/

ArduPilot. (2021b). Mission Planner Home. https://ardupilot.org/planner/

Costa, E. F., Souza, D. A., Pinto, V. P., Araújo, M. S., Peixoto, A. M. y Da Costa, E. P. (2019). Prediction of Lithium-Ion Battery Capacity in UAVs [ponencia]. 6th International Conference on Control, Decision and Information Technologies (Codit), 1865-1869. https://doi.org/10.1109/CoDIT.2019.8820714

Dündar, Ö., Bilici, M. y Ünler, T. (2020). Design and Performance Analyses of a Fixed Wing Battery VTOL UAV. Engineering Science and Technology, an International Journal, 23(5), 1182-1193. https://doi.org/10.1016/j.jestch.2020.02.002

Fernández Delgado, T. (2021). Estudio para la implementación de sistemas de celdas de combustible en vehículos aéreos no tripulados (tesis de grado, Centro Universitario de la Defensa en la Escuela Naval Militar). Repositorio institucional CUDE. http://calderon.cud.uvigo.es/handle/123456789/421

Foxtech. (2022). Foxtech 6S 12500 mAh Li-ion Battery. https://www.foxtechfpv.com/foxtech-6s-12500mah-li-ion-battery.html

Iglesias, R., Lago, A., Nogueiras, A., Martínez-Peñalver, C., Marcos, J., Quintans, C., Moure, M. J. y Valdés, M. D. (2012). Modelado y simulación de una batería de ion-litio comercial multicelda. http://quintans.webs.uvigo.es/documentos/2012-SAAEI-0464-gf-000126.pdf

Larin, V., Solomentsev, O., Zaliskyi, M., Shcherban, A., Averianova, Y., Ostroúmov, I., Kuzmenko, N., Sushchenko, O. y Bezkorovainyi, Y. (2022). Prediction of the Final Discharge of the UAV Battery Based on Fuzzy Logic Estimation of In formation and Influencing Parameters [ponencia]. IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek). Cracovia, Ucrania. Octubre 3-7 de 2022. https://doi.org/10.1109/KhPIWeek57572.2022.9916490

Lee, D., Zhou, J. y Lin, W. T. (2015). Autonomous Battery Swapping System for Quadcopter [ponencia]. International Conference on Unmanned Aircraft Systems (ICUAS). Denver, Estados Unidos. Junio 9-12 de 2015. https://doi.org/10.1109/ICUAS.2015.7152282

Marques, M. (2015). STANAG 4586 — Standard Interfaces of UAV Control System (UCS) for NATO UAV Interoperability. https://www.sto.nato.int/publications/STO%20Educational%20Notes/STO-EN-SCI-271/EN-SCI-271-03.pdf

Quintero, V., Che, O., Ching, E., Auciello, O. y De Obladía, E. (2021). Baterías de Ion Litio: características y aplicaciones. Revista de I+D Tecnologico, 17(1). http://portal.amelica.org/ameli/jatsRepo/339/3392002003/3392002003.pdf

Shengnan, L., Qiao, L., Ningyun, L. y Bin, J. (2014). Real-Time Estimation of Cruise Duration for Electric-Powered Micro-UAVs [ponencia]. The 26th Chinese Control and Decision Conference (CCDC). Changsha, China. Mayo 31 - junio 2 de 2014. https://doi.org/10.1109/CCDC.2014.6853091

Tattu. (2022). Tattu Gens Battery. https://genstattu.com/search.php?search_query=battery

Thibbotuwawa, A. N. (2018). Energy Consumption in Unmanned Aerial Vehicles: A Review of Energy Consumption Models and Their Relation to the UAV Routing. Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018 (J. Świątek, L. Borzemski y Z. Wilimowska, eds.). Springer. https://doi.org/10.1007/978-3-319-99996-8_16

Wei, K., Wu, J., Ma, W. y Li, H. (2019). State of Charge Prediction for UAVs Based on Support Vector Machine. The Journal of Engineering, (23). https://doi.org/10.1049/joe.2018.9201

Yan, H., Yang, S.-H., Chen, Y. y Fahmy, S. A. (2021). Optimum Battery Weight for Maximizing Available Energy in UAV-Enabled Wireless Communications. IEEE Wireless Communications Letters, 10(7), 1410-1413. https://doi.org/10.1109/LWC.2021.3069078

Zobaa, A. F. y Leuchter, J. (2016). Batteries Investigations of Small Unmanned Aircraft Vehicles [ponencia]. 8th IET International Conference on Power Electronics, Machines and Drives (PEMD). Glasgow, Reino Unido. Abril 19-21 de 2016. https://doi.org/10.1049/cp.2016.0306

Published

2023-07-25

Issue

Section

Operational Safety and Aviation Logistics

How to Cite

Battery Autonomy Validation Methodology for a Tactical uav. (2023). Ciencia Y Poder Aéreo, 18(2), 20-34. https://doi.org/10.18667/cienciaypoderaereo.791