Overview of the International Space Station cabin environment as an analog for exploration-type missions: A view from aerospace medicine
DOI:
https://doi.org/10.18667/cienciaypoderaereo.753Keywords:
Astronauts, international space station, occupational exposure, space physiology, aerospace medicine, space flightAbstract
The health and safety of astronauts on space exploration missions depends on the environment they inhabit, and survival in extreme environments requires robust systems that provide protection and an atmosphere that allows them to perform normally in a hostile environment. It is important, then, to understand the close relationship of life support systems, and the impact on the wellbeing of those working in confined space with minimal resource and energy utilization.The objective of this review is to describe the environmental control and life support systems of the International Space Station, and to relate the impact on the astronauts’ health and psychophysical performance if they do not function normally. Scopus, Ovid, arXiv.org, SAGE, BioMed, ClincalKey, Pro-Quest, EBSCO, SpringerLink, Web of Science, Google Scholar, and Pubmed databases are searched, integrating the environmental control and life support system with pathophysiological phenomena in case of emergency. We collected 649 references with the search strategies and subtracted those that were repeated (445) and whose full text was not obtained (133), with a total of 71 references for analysis. The habitation characteristics of the International Space Station are discussed in terms of quality and quantity of available air, gas composition, oxygen and nitrogen production, carbon dioxide scavenging and its effects on the astronaut under microgravity conditions. In addition, toxicological effects, microbiological environment, acoustics, and electromagnetic radiation exposure monitoring are explored. Future space exploration type missions will require robust environmental monitoring systems with low risk of failure and likely use of in situ resources.
Downloads
References
American Conference of Governmental Industrial Hygienists (acgih). (2020). tlvs and beis based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices. acgih.
Alfano, C. A., Bower, J. L., Cowie, J., Lau, S. y Simpson, R. J. (2018). Long-duration space exploration and emotional health: Recommendations for conceptualizing and eval-uating risk. Acta Astronautica, 142, 289-299. https://doi.org/10.1016/j.actaastro.2017.11.009
Allen, J. G., MacNaughton, P., Satish, U., Santanam, S., Vallari-no, J. y Spengler, J. D. (2016). Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: A controlled exposure study of green and conventional office environments. Environmental Health Perspectives, 124(6), 805-812. https://doi.org/10.1289/ehp.1510037
Anders, G. y Selim, B. J. (2021). Sleep disordered breathing at high altitude. Complex sleep breathing disorders: A clini-cal casebook of challenging patient (C. Won, ed.; pp. 177-184). Springer. https://doi.org/10.1007/978-3-030-57942-5_16
Auerbach, P. S., Cushing, T. A. y Harris, N. S. (2016). Auerbach's wilderness medicine e-book. Elsevier Health Sciences.
Bagdigian, R. M., Dake, J., Gentry, G. y Gault, M. (2015). Inter-national Space Station environmental control and life support system mass and crew-time utilization in com-parison to a long duration human space exploration mission [ponencia]. 45th International Conference on Environmental Systems-ices, 13-17 July, Seattle, Wash-ington. http://hdl.handle.net/2346/64374
Barer, G. R., Howard, P. y Shaw, J. W. (1970). Stimulus - Re-sponse curves for the pulmonary vascular bed to hypoxia and hypercapnia. The Journal of Physiology, 211(1), 139-155. https://doi.org/10.1113/jphysiol.1970.sp009271
Barratt, M. R., Baker, E. S. y Pool, S. L. (2020). Principles of clinical medicine for space flight. Principles of clinical medicine for space flight (M. R. Barrat, Baker E. S y S. L. Pool, eds.). Springer Nature. https://doi.org/10.1007/978-1-4939-9889-0
Bayt, R. L. y Lueders, K. L. (2016). iss crew transportation and services requirements document. nasa. https://ntrs.nasa.gov/api/citations/20170001943/downloads/20170001943.pdf
Bejarano, X., Malpica, D., Cortés, D., Campos, C., Buitrago, N., Jiménez, G., Harasymczuk, M., Hettrich, S. y Kolodzie-jczyk, A. (2022). Astronaut training and analysis of human performance during the human operational research space analog simulation [ponencia]. 73rd International Astronautical Congress (iac).
Bijlani, S., Stephens, E., Singh, N. K., Venkateswaran, K. y Wang, C. C. C. (2021). Advances in space microbiology. IScience, 24(5), 102395. https://doi.org/10.1016/j.isci.2021.102395
Biswal M, M. K., Gómez-Fernández, D., Das, N. B. y Kumar V, R. (2021). Design study and validation of Mars under-ground habitat for human settlement on Mars. aiaa Pro-pulsion and Energy 2021 Forum. https://doi.org/10.2514/ 6.2021-3725
Cameron, P., Little, M. y Mitra, B. (2020). Textbook of adult emergency medicine (5.a ed.; vol. 1). Elsevier.
Carrasquillo, R. L., Reuter, J. L. Y Philistine, C. L. (1997). Sum-mary of resources for the International Space Station environmental control and life support system. sae Technical Paper. https://doi.org/10.4271/972332
Clément, G. (2011). Fundamentals of space medicine. Space technology library (2.a ed.; vol. 17). Microcosm Press; Springer. https://doi.org/10.1007/978-1-4419-9905-4
Connolly, D. M., Barbur, J. L., Hosking, S. L. y Moorhead, I. R. (2008). Mild hypoxia impairs chromatic sensitivity in the mesopic range. Investigative Ophthalmology & Vi-sual Science, 49(2), 820-827. https://doi.org/10.1167/iovs.07-1004
Connolly, D. M. y Hosking, S. L. (2006). Aviation-related respi-ratory gas disturbances affect dark adaptation: A reap-praisal. Vision Research, 46(11), 1784-1793. https://doi.org/10.1016/j.visres.2005.10.027
Cortright, E. M. (2019). Apollo expeditions to the Moon: The nasa history: 50th Anniversary Edition. Courier Dover Publications.
Creech, S., Guidi, J. y Elburn, D. (2022). Artemis: An overview of nasa's activities to return humans to the Moon. 2022 ieeeAerospace Conference (aero). Pages 1-7. https://doi.org/10.1109/AERO53065.2022.9843277
Davis, J. R., Johnson, R. y Stepanek, J. (2008). Fundamentals of aerospace medicine (4.a ed). Lippincott Williams & Wilkins.
De Aquino Lemos, V., Antunes, H. K. M., Dos Santos, R. V. T., Lira, F. S., Tufik, S. y De Mello, M. T. (2012). High altitude exposure impairs sleep patterns, mood, and cognitive functions. Psychophysiology, 49(9), 1298-1306. https://doi.org/10.1111/j.1469-8986.2012.01411.x
DeLucas, L. J. (1996). International Space Station. Acta Astro-nautica, 38(4-8), 613-619. https://doi.org/10.1016/0094-5765(96)00056-2
Deplano, R. (2021). The Artemis Accords: Evolution or Revolu-tion in International Space Law? International & Com-parative Law Quarterly, 70(3), 799-819. https://doi.org/10.1017/S0020589321000142
Eckart, P. (2013). Spaceflight life support and biospherics (vol. 5). Springer Science & Business Media.
Escobar, C., Nabity, J. y Escobar, A. (2019). Quantifying eclss ro-bustness for deep space exploration. https://hdl.handle.net/2346/84455
Escobar, C., Nabity, J. y Klaus, D. (2017). Defining eclss ro-bustness for deep space exploration. http://hdl.handle.net/2346/73061
Fortney, S. M., Mikhaylov, V., Lee, S. M., Kobzev, Y., Gonzalez, R. R. y Greenleaf, J. E. (1998). Body temperature and ther-moregulation during submaximal exercise after 115-day spaceflight. Aviation, Space, and Environmental Medicine, 69(2), 137-141. https://pubmed.ncbi.nlm.nih.gov/9491252/
Hall, J. E. y Hall, M. E. (2020). Guyton and Hall textbook of medi-cal physiology. Elsevier Health Sciences.
Hapke, J., Ranong, C. N., Brodt, K. y Tan, G. (2003). Tempera-ture and humidity control by means of a Membrane based Condensing Heat Exchanger (mchx). sae Technical Paper. https://doi.org/10.4271/2003-01-2628
Horie, M., Kambara, T., Kuroda, E., Miki, T., Honma, Y., Aoki, S. y Morimoto, Y. (2012). Possibility of exacerbation of aller-gy by lunar regolith. Journal of University of Occupation-al and Environmental Health, Japan uoeh, 34(3), 237-243. https://doi.org/10.7888/juoeh.34.237
Horng, C.-T., Liu, C.-C., Wu, D.-M., Wu, Y.-C., Chen, J.-T., Chang, C.-J. y Tsai, M.-L. (2008). Visual fields during acute expo-sure to a simulated altitude of 7620 m. Aviation, Space, and Environmental Medicine, 79(7), 666-669. https://doi.org/10.3357/asem.2160.2008
Institute of Electrical and Electronics Engineers (ieee). (2019). ieee Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. https://doi.org/10.1109/IEEESTD. 2019.8859679
Jernigan, M., Gatens, R., Perry, J. y Joshi, J. (2018). The next steps for environmental control and life support systems development for deep space exploration. http://hdl.handle.net/2346/74222
Kennedy, A. R. (2014). Biological effects of space radiation and development of effective countermeasures. Life Scienc-es in Space Research, 1, 10-43. https://doi.org/10.1016/j.lssr.2014.02.004
Kourtidou-Papadeli, C. (2022). Effects of spaceflight on the ner-vous system. Handbook of Space Pharmaceuticals (Y. V. Pathak, M. Araújo dos Santos, L. Zea, eds.; pp. 521-553). Springer. https://doi.org/10.1007/978-3-030-05526-4_49
La Duc, M. T., Kern, R. y Venkateswaran, K. (2004). Microbi-al Monitoring of Spacecraft and Associated Environ-ments. Microbial Ecology, 47(2), 150-158. https://doi.org/10.1007/s00248-003-1012-0
Lam, C. W., Coleman, M. E. y García, H. D. (1997). Guidelines for assessing the toxic hazard of spacecraft chemicals and test materials. nasa-Johnson Space Center.
Law, J., Young, M., Alexander, D., Mason, S. S., Wear, M. L., Méndez, C. M., Stanley, D., Ryder, V. M. y Van Baalen, M. (2017). Carbon dioxide physiological training at nasa. Aerospace Medicine and Human Performance, 88(10), 897-902. https://doi.org/10.3357/amhp.4552.2017
Lee, P. H. U., Chung, M., Ren, Z., Mair, D. B. y Kim, D. H. (2022). Factors mediating spaceflight-induced skeletal muscle atrophy. American Journal of Physiology - Cell Physiol-ogy, 332(3). https://doi.org/10.1152/ajpcell.00203.2021
Ley, W., Wittmann, K. y Hallmann, W. (Eds.) (2009). Handbook of Space Technology (vol. 22). John Wiley & Sons. https://doi.org/10.1002/9780470742433
Lovell, J. y Kluger, J. (2006). Apollo 13. Houghton Mifflin Harcourt.
Man, J., Graham, T., Squires-Donelly, G. y Laslett, A. L. (2022). The effects of microgravity on bone structure and func-tion. npj Microgravity, 8(1), 1-15. https://doi.org/10.1038/s41526-022-00194-8
National Aeronautics and Space Administration (nasa). (2019). nasaSpaceflight Human-System Standard. Volume 2: Hu-man factors, habitability, and environmental health. nasa.
Newkirk, D. (1990). Almanac of soviet manned space flight. Gulf Pub Co.
Nicogossian, A. E., Williams, R. S., Huntoon, C. L., Doarn, C. R., Polk, J. D. y Schneider, V. S. (2016). Space physiology and medicine: From evidence to practice (4.a ed.). Springer. https://doi.org/10.1007/978-1-4939-6652-3
Pagel, J. I. y Choukèr, A. (2016). Effects of isolation and con-finement on humans-implications for manned space explorations. Journal of Applied Physiology, 120(12), 1449-1457. https://doi.org/10.1152/japplphysiol.00928.2015
Pérez-Vara, R., Mannu, S., Pin, O. y Müller, R. (2003). Overview of European Applications of EcosimPro to eclss, celss, and atcs. sae Technical Paper. https://doi.org/10.4271/2003-01-2439
Perry, J. L. (2017). Trace contaminant control for the Interna-tional Space Station's Node 1 - Analysis, Design, and Ver-ification. nasa Technical Publication.
Peterson, L. J. (2013). Environmental Control and Life Support System (eclss) System Engineering Workshop. BiblioGov.
Petrassi, F. A., Hodkinson, P. D., Walters, P. L. y Gaydos, S. J. (2012). Hypoxic hypoxia at moderate altitudes: review of the state of the science. Aviation, Space, and Envi-ronmental Medicine, 83(10), 975-984. https://doi.org/10.3357/asem.3315.2012
Pickett, L., Connolly, J., Arch, M., Tillman, B. y Russo, D. (2007). nasa-std 3001 and the Human Integration Design Hand-book (hidh): Evolution of nasa-std-3000. https://ntrs.nasa.gov/citations/20070017247
Pierson, D. L. (2007). Microbial contamination of space-craft. Gravitational and Space Research, 14(2). https://pubmed.ncbi.nlm.nih.gov/11865864/
Polyakov, V. V, Lacota, N. G. y Gundel, A. (2001). Human ther-mohomeostasis onboard "Mir" and in simulated mi-crogravity studies. Acta Astronautica, 49(3-10), 137-143.https://doi.org/10.1016/S0094-5765(01)00091-1
Raichle, M. E. y Gusnard, D. A. (2002). Appraising the brain's energy budget. Proceedings of the National Academy of Sciences, 99(16), 10237-10239. https://doi.org/10.1073/pnas.172399499
Rainford, D. y Gradwell, D. P. (2016). Ernsting's aviation and space medicine (5.a ed). crc Press; Taylor & Francis Group.
Ridley, A. H., Shaw, L. A., Brown, C. A., Garr II, J. D., Gavin, L. L., Hornyak, D. M., Matty, C. M., Toon, K. P. y Caradec, P. A. (2022). International Space Station as a testbed for exploration environmental control and life support sys-tems-2022 Status [ponencia]. 51st International Confer-ence on Environmental Systems ices.
Robinson, J. A., Waid, M. C., Korth, D., Rucker, M. y Renfrew, R. (2019). Innovative approaches to using the International Space Station as a Mars-transit analog [ponencia]. Inter-national Astronautical Congress.
Rodeheffer, C. D., Chabal, S., Clarke, J. M. y Fothergill, D. M. (2018). Acute exposure to low-to-moderate carbon di-oxide levels and submariner decision making. Aero-space Medicine and Human Performance, 89(6), 520-525. https://doi.org/10.3357/AMHP.5010.2018
Rose, D. (1998). International space station familiarization. En Progressive Management, Inside the International Space Station (iss): nasa International Space Station Familiariza-tion Astronaut Training Manual - Comprehensive Review of iss Systems. nasa.
Ryder, V., McCoy, J. y Hayes, J. (2020). Spacecraft maximum al-lowable concentrations for airborne contaminants. nasa. https://standards.nasa.gov/standard/jsc/jsc-20584
Satish, U., Mendell, M. J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S. y Fisk, W. J. (2012). Is CO2 an indoor pol-lutant? Direct effects of low-to-moderate CO2 concen-trations on human decision-making performance. Environmental Health Perspectives, 120(12), 1671-1677. https://doi.org/10.1289/ehp.1104789
Scully, R. R., Basner, M., Nasrini, J., Lam, C.-W., Hermosillo, E., Gur, R. C., Moore, T., Alexander, D. J., Satish, U. y Ryder, V. E. (2019). Effects of acute exposures to carbon diox-ide on decision making and cognition in astronaut-like subjects. npj Microgravity, 5(1). https://doi.org/10.1038/s41526-019-0071-6
Seedhouse, E. (2020). Life support systems for humans in space. Springer. https://doi.org/10.1007/978-3-030-52859-1
Siegel, B., Spry, J. A., Wallace, S. L., Robinson, J. A., Broyan, J. y Mahoney, E. (2022). Development of a nasa Roadmap for Planetary Protection to prepare for the first Human Mis-sions to Mars [ponencia]. 44th cospar Scientific Assem-bly, 16-24 July.
Son, C. H., Zapata, J. L. y Lin, C.-H. (2002). Investigation of air-flow and accumulation of carbon dioxide in the service module crew quarters. sae Technical Paper. https://doi.org/10.4271/2002-01-2341
Stadelmann, K., Latshang, T. D., Tarokh, L., Lo Cascio, C. M., Tesler, N., Stoewhas, A., Kohler, M., Bloch, K. E., Huber, R. y Achermann, P. (2014). Sleep respiratory disturbanc-es and arousals at moderate altitude have overlapping electroencephalogram spectral signatures. Journal of Sleep Research, 23(4), 463-468. https://doi.org/10.1111/jsr.12131
Stahn, A. C., Werner, A., Opatz, O., Maggioni, M. A., Steinach, M., Von Ahlefeld, V. W., Moore, A., Crucian, B. E., Smith, S. M., Zwart, S. R., Schlabs, T., Mendt, S., Trippel, T., Koralews-ki, E., Koch, J., Chouker, A., Reitz, G., Shang, P., Röcker, L., et al. (2017). Increased core body temperature in as-tronauts during long-duration space missions. Scien-tific Reports, 7(1), 1-8. https://epub.ub.uni-muenchen.de/50239/ https://doi.org/10.1038/s41598-017-15560-w
Stambaugh, I. C., Baccus, S., Naids, A. J., Borrego, M., Hanford, A., Eckhardt, B., Allada, R. K. y Yagoda, E. (2013). Environ-mental controls and life support system (eclss) design for a multi-mission space exploration vehicle (mmsev). 43rd International Conference on Environmental Systems. https://doi.org/10.2514/6.2013-3428
Stapleton, T., Heldmann, M., Schneider, S., O'Neill, J., Sam-platsky, D., White, K. y Corallo, R. (2016). Environmental control and life support for deep space travel. http://hdl.handle.net/2346/74271
Swenson, E. R. y Bärtsch, P. (2021). The search for a model of high-altitude pulmonary oedema must continue. Acta Physiologica, 231(1), e13485. https://doi.org/10.1111/apha.13485
Tanaka, K., Nishimura, N. y Kawai, Y. (2017). Adaptation to mi-crogravity, deconditioning, and countermeasures. The Journal of Physiological Sciences, 67(2), 271-281. https://doi.org/10.1007/s12576-016-0514-8
Terhorst, A. y Dowling, J. A. (2022). Terrestrial analogue re-search to support human performance on Mars: A review and bibliographic analysis. https://downloads.spj.sci-encemag.org/space/aip/9841785.pdf https://doi.org/10.34133/2022/9841785
Thomas, K. S. y McMann, H. J. (2011). us spacesuits. Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-9566-7
Townsend, L. W. y Fry, R. J. M. (2002). Radiation protection guidance for activities in Low-Earth orbit. Advances in Space Research, 30(4), 957-963. https://doi.org/10.1016/S0273-1177(02)00160-6
Turner, C. E., Byblow, W. D. y Gant, N. (2015). Creatine sup-plementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. Journal of Neuroscience, 35(4), 1773-1780. https://doi.org/10.1523/JNEUROSCI.3113-14.2015
Venkat, D., Dhillon, K. y Rowley, J. A. (2021). Effects of high alti-tude on sleep and respiratory system. Current Pulmonol-ogy Reports, 10, 103-109. https://doi.org/10.1007/s13665-021-00276-0
Virts, T. (2020). How to astronaut: An insider's guide to leaving planet Earth. Workman Publishing.
Vogt, C., Monai, M., Kramer, G. J. y Weckhuysen, B. M. (2019). The renaissance of the Sabatier reaction and its applica-tions on Earth and in space. Nature Catalysis, 2(3), 188-197. https://doi.org/10.1038/s41929-019-0244-4
Williams, D., Dake, J. y Gentry, G. (2012). International Space Station environmental control and life support system status for the prior year: 2010-2011 [ponencia]. 42nd In-ternational Conference on Environmental Systems https://doi.org/10.2514/6.2012-3612
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Escuela de Postgrados de la Fuerza Aérea Colombiana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Assignment of Copyrights
Authors assign Ciencia y Poder Aéreo journal the exclusive rights (reproduction, distribution, public communication, and transformation) to exploit and commercialize their work, in whole or in part, in all the formats and modalities of present or future exploitation, in all languages, throughout the life of the work and throughout the world.
All contents published in Ciencia y Poder Aéreo journal are licensed under a Creative Commons Attribution 4.0 International License, whose complete information is available at http://creativecommons.org/licenses/by/4.0/
Under the terms of this license, users are free to download, print, extract, archive, distribute and publicly communicate the content of articles, provided that proper credit is granted to authors and Ciencia y Poder Aéreo, scientific journal of the Graduate School of the Colombian Air Force. Except when otherwise indicated, this site and its contents are licensed under a Creative Commons Attribution 4.0 International License.
For other uses not considered under this license it is required to contact the Director or the Editor of the journal at the e-mail address cienciaypoderaereo1@gmail.com.
The Graduate School of the Colombian Air Force and this publication are not responsible for the concepts expressed in the articles, including the metadata or the affiliation stated by authors. This is the full responsibility of the authors.