Development of a CANSAT Prototype for the Detection of Vegetation Areas in Precision Agriculture through Aerial Imaging

Authors

DOI:

https://doi.org/10.18667/cienciaypoderaereo.709

Keywords:

Image analysis, CANSAT, picosatellite, remote sensing, precision agriculture

Abstract

This article presents the design of the CANSAT Heliospectrum, developed for remote sensing and image analysis, which participated in the annual competition held by the Society for Aerospace and Electronic Systems (AESS), Colombia Chapter. The team Helios, developer of the CANSAT, is part of astra Research Group at the University of Antioquia (Colombia). The equipment was designed following the restrictions imposed by the competition, which stated that the picosatellite must resemble a radiosonde with transmitters, electronic components, sensors that measure accelerations, atmospheric pressure, temperature, magnetic fields, and besides being able to fly at a height of at least 1,000 meters, fall freely and land with the help of a parachute. The design meets the requirements to make of this cansat a multipurpose platform focused on remote sensing for its application in precision agriculture activities. An RGB camera was implemented as payload. This component allowed obtaining qualitative results of vegetation indices through an image analysis algorithm that implements the Excess Green Index (Exg) and the Hue Saturation Value (HSV) color scale. The cansat is conceptualized in five subsystems: flight computer, telemetry, structure, descent and recovery, and power. The avionics of the picosatellite includes main components such as the Teensy 3,5 microcontroller, GPS GY-NEO6MV2 and IMU GY-89, while the recovery system has a parachute that is ejected with a servomotor. A prototype of the cansat was manufactured and successfully tested by Helios, being awarded the “Condors” category at the AESS CANSAT Colombia competition.

Downloads

Download data is not yet available.

Author Biographies

  • Juan José Mejía González, Universidad de Antioquia, Colombia.

    Estudiante, Ingeniería Aeroespacial. Grupo de Investigación en Ciencia y Tecnología Aeroespacial (ASTRA) Rol del investigador: experimental y escritura.

  • Sebastián Augusto Zapata Gil, Universidad de Antioquia, Colombia.

    Estudiante, Ingeniería Aeroespacial. Grupo de Investigación en Ciencia y Tecnología Aeroespacial (ASTRA) Rol del investigador: experimental y escritura.

  • Sebastian, Universidad de Antioquia, Colombia.

    Estudiante, Ingeniería Aeroespacial. Grupo de Investigación en Ciencia y Tecnología Aeroespacial (ASTRA) Rol del investigador: experimental y escritura.

  • Nicolás Buriticá Isaza, Universidad de Antioquia, Colombia.

    Estudiante, Ingeniería Aeroespacial. Grupo de Investigación en Ciencia y Tecnología Aeroespacial (ASTRA) Rol del investigador: experimental y escritura.

  • Davinson Arsuis González Jaramillo, Universidad de Antioquia, Colombia.

    Estudiante, Ingeniería Mecánica. Grupo de Investigación en Ciencia y Tecnología Aeroespacial (ASTRA) Rol del investigador: experimental y escritura.

  • Jorge M. Zamora Vélez, Universidad de Antioquia, Colombia.

    Ingeniero Electrónico, Docente, Ingeniería Aeroespacial. Grupo de Investigación en Ciencia y Tecnología Aeroespacial (ASTRA) Rol del investigador: docente y escritura.

References

Anchino, L. A., Torti, A. F., Dovis, E. M., Bernardi, E., & Podadera, R. (2019). Implementación de una Plataforma de Desarrollo CANSAT Multipropósito. Elektron, 3(2), 120-127. https://doi.org/10.37537/rev.elektron.3.2.93.2019

Baran, E., Canbazoglu Bilici, S., Mesutoglu, C., & Ocak, C. (2019). The impact of an out‐of‐school STEM education program on students’ attitudes toward STEM and STEM careers. School Science and Mathematics, 119(4), 223-235. https://doi.org/10.1111/ssm.12330

Bhad, B., & Akant, K. (2019). Experimental CANSAT for Measurment of UV Radiation. International Conference on Emerging Trends in Engineering and Technology, ICETET, 19-22. https://doi.org/10.1109/ICETET-SIP-1946815.2019.9092213

Cabuya, G. (2020). Aerospace Colombia Ganadores CANSAT 2020. Colegio empresarial Los Andes. https://colegioempresarial.edu.co/aerospace-colombia-ganadores-CANSAT-2020/

Cabuya, G. (2021, 30 de marzo). CANSAT 2020. AESS Colombia. https://aesscolombia.blogspot.com/p/CANSAT-colombia-2020.html

Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7(4), 4026-4047. https://doi.org/10.3390/rs70404026

Carrasco-Ríos, L. (2009). Efecto de la radiación ultravioleta-b en plantas. Idesia (Arica), 27(3), 59-76. https://doi.org/10.4067/S0718-34292009000300009

Centro de Investigación en Ciencias de Información Geoespacial [CentroGeo]. (s.f.). Percepción Remota. CentroGeo. https://www.centrogeo.org.mx/investigacion/percepcion-remota

English, L. D., & King, D. T. (2015). STEM learning through engineering design: fourth-grade students’ investigations in aerospace. International Journal of STEM Education, 2(1), 1-18. https://doi.org/10.1186/s40594-015-0027-7

European Space Agency [ESA]. (s.f.). ESA - What is a CANSAT? http://www.esa.int/Education/CANSAT/What_is_a_CANSAT

Faroukh, Y. M., AL-Ali, A. A. M. A., Adwan, A. O., Alhammadi, A., Shaikh, M. M., Faroukh, A. M., & Femini, I. (2019, Julio). Environmental Monitoring using CANSAT. 2019 6th International Conference on Space Science and Communication (IconSpace) (pp. 239-244). IEEE. https://doi.org/10.1109/IconSpace.2019.8905942

Finagro. (2021). El momento del Agro. https://www.finagro.com.co/noticias/el-momento-del-agro

General Wire Spring Company. (s.f.). Conical compression springs. https://www.generalwirespring.com/conical-compression-springs.html

Honrado, J. L. E., Solpico, D. B., Favila, C. M., Tongson, E., Tangonan, G. L., & Libatique, N. J. C. (2017). UAV imaging with low-cost multispectral imaging system for precision agriculture applications. GHTC 2017 - IEEE Global Humanitarian Technology Conference, Proceedings, 1-7. https://doi.org/10.1109/GHTC.2017.8239328

Jaramillo, O. A., & Briñez, R. C. (2019). Design of a CANSAT for measuring environmental variables. Revista Especializada en Tecnología e Ingeniería, 13(2), 31-38. https://core.ac.uk/download/pdf/322589509.pdf

Matplotlib. (s.f.). Matplotlib: Visualization with Python. https://matplotlib.org/

Metternicht, G. (2003). Vegetation indices derived from high-resolution airborne videography for precision crop management. International Journal of Remote Sensing, 24(14), 2855-2877. https://doi.org/10.1080/01431160210163074

Molla, W. (2018). Design and development of CANSAT: Transmit weather data from troposphere level to the ground station. Addis Ababa University. http://213.55.95.56/bitstream/handle/123456789/15777/Waleligne%20Molla.pdf?sequence=1&isAllowed=y

Mouser Electronics. (s.f.). DHT11 Humidity & Temperature Sensor [Archivo PDF]. https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf

Nordic Semiconductor. (2008). nRF24 Single Chip Transceiver [Archivo PDF]. https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf

OmniVision Technologies Inc. (s.f.). OV7670 Datasheet [Archivo PDF]. https://www.alldatasheet.com/datasheet-pdf/pdf/312420/OMNIVISION/OV7670.html

Parody, A., & Zapata, E. de J. (2018). Agricultura de precisión en Colombia utilizando teledetección de alta resolución. Suelos Ecuatoriales, 48(1-2), 41-49. http://unicauca.edu.co/revistas/index.php/suelos_ecuatoriales/article/view/94

PJRC. (s.f.a). Teensy 3,5 Development Board. https://www.pjrc.com/store/teensy35.html

PJRC. (s.f.b). Teensy Software Setup. https://www.pjrc.com/teensy/tutorial.html

Python. (s.f.). tkinter-Python interface to Tcl/Tk. https://docs.python.org/es/3/library/tkinter.html

Rodríguez, J. S., Botero, A. Y., Lopera, D. V., Gálvez, J., & Botero, F. (2021). Experimental approach for the evaluation of the performance of a satellite module in the CANSAT form factor for in-situ monitoring and remote sensing applications. Hindawi International Journal of Aerospace Engineering, 1-31. https://www.hindawi.com/journals/ijae/2021/8868797/

Sparkfun. (s.f.). Arduino Comparison Guide. https://www.sparkfun.com/advanced_arduino_comparison_guide

Tjandra, K. (2020). CANSAT 2020 Preliminary Design Review (PDR) Outline Team ID 1360. Manchester CANSAT Project. http://www.CANSATcompetition.com/docs/teams/CANSAT2020_4920_pdr_v01.pdf

Tortora, P. G. (1996). Fairchild’s Dictionary of Textiles. Bloomsbury Academic.

Trivelli, L., Apicella, A., Chiarello, F., Rana, R., Fantoni, G., & Tarabella, A. (2019). From precision agriculture to Industry 4.0: Unveiling technological connections in the agrifood sector. British Food Journal, 121(8), 1730-1743. https://doi.org/10.1108/BFJ-11-2018-0747

Tzinis, I. (2015). NASA official website. https://www.nasa.gov/directorates/heo/scan/engineering/technology/txt_accordion1.html

U-blox. (2017). NEO-6 u-blox 6 GPS Modules. U-blox, 25. https://www.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf

Universidad Nacional Autónoma de México [UNAM]. (s.f.). ¿Qué es un CANSAT? Programa Espacial Universitario. http://peu.unam.mx/descripcionCANSAT.html

Vishay Semiconductors. (2019). Designing the VEML6070 UV Light Sensor. https://www.vishay.com/docs/84310/designingveml6070.pdf

Wertz, J. R., Everett, D. F., & Pusschell, J. J. (2011). Space mission engineering: The new SMAD. Microcosm Press.

Yang, W., Wang, S., Zhao, X., Zhang, J., & Feng, J. (2015). Greenness identification based on HSV decision tree. Information Processing in Agriculture, 2(3-4), 149-160. https://doi.org/10.1016/j.inpa.2015.07.003

Published

2021-11-01

Issue

Section

Desarrollo Espacial - Ad Astra

How to Cite

Development of a CANSAT Prototype for the Detection of Vegetation Areas in Precision Agriculture through Aerial Imaging. (2021). Ciencia Y Poder Aéreo, 16(2), 11-28. https://doi.org/10.18667/cienciaypoderaereo.709