Development of a CANSAT Prototype for the Detection of Vegetation Areas in Precision Agriculture through Aerial Imaging
DOI:
https://doi.org/10.18667/cienciaypoderaereo.709Keywords:
Image analysis, CANSAT, picosatellite, remote sensing, precision agricultureAbstract
This article presents the design of the CANSAT Heliospectrum, developed for remote sensing and image analysis, which participated in the annual competition held by the Society for Aerospace and Electronic Systems (AESS), Colombia Chapter. The team Helios, developer of the CANSAT, is part of astra Research Group at the University of Antioquia (Colombia). The equipment was designed following the restrictions imposed by the competition, which stated that the picosatellite must resemble a radiosonde with transmitters, electronic components, sensors that measure accelerations, atmospheric pressure, temperature, magnetic fields, and besides being able to fly at a height of at least 1,000 meters, fall freely and land with the help of a parachute. The design meets the requirements to make of this cansat a multipurpose platform focused on remote sensing for its application in precision agriculture activities. An RGB camera was implemented as payload. This component allowed obtaining qualitative results of vegetation indices through an image analysis algorithm that implements the Excess Green Index (Exg) and the Hue Saturation Value (HSV) color scale. The cansat is conceptualized in five subsystems: flight computer, telemetry, structure, descent and recovery, and power. The avionics of the picosatellite includes main components such as the Teensy 3,5 microcontroller, GPS GY-NEO6MV2 and IMU GY-89, while the recovery system has a parachute that is ejected with a servomotor. A prototype of the cansat was manufactured and successfully tested by Helios, being awarded the “Condors” category at the AESS CANSAT Colombia competition.
Downloads
References
Anchino, L. A., Torti, A. F., Dovis, E. M., Bernardi, E., & Podadera, R. (2019). Implementación de una Plataforma de Desarrollo CANSAT Multipropósito. Elektron, 3(2), 120-127. https://doi.org/10.37537/rev.elektron.3.2.93.2019
Baran, E., Canbazoglu Bilici, S., Mesutoglu, C., & Ocak, C. (2019). The impact of an out‐of‐school STEM education program on students’ attitudes toward STEM and STEM careers. School Science and Mathematics, 119(4), 223-235. https://doi.org/10.1111/ssm.12330
Bhad, B., & Akant, K. (2019). Experimental CANSAT for Measurment of UV Radiation. International Conference on Emerging Trends in Engineering and Technology, ICETET, 19-22. https://doi.org/10.1109/ICETET-SIP-1946815.2019.9092213
Cabuya, G. (2020). Aerospace Colombia Ganadores CANSAT 2020. Colegio empresarial Los Andes. https://colegioempresarial.edu.co/aerospace-colombia-ganadores-CANSAT-2020/
Cabuya, G. (2021, 30 de marzo). CANSAT 2020. AESS Colombia. https://aesscolombia.blogspot.com/p/CANSAT-colombia-2020.html
Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7(4), 4026-4047. https://doi.org/10.3390/rs70404026
Carrasco-Ríos, L. (2009). Efecto de la radiación ultravioleta-b en plantas. Idesia (Arica), 27(3), 59-76. https://doi.org/10.4067/S0718-34292009000300009
Centro de Investigación en Ciencias de Información Geoespacial [CentroGeo]. (s.f.). Percepción Remota. CentroGeo. https://www.centrogeo.org.mx/investigacion/percepcion-remota
English, L. D., & King, D. T. (2015). STEM learning through engineering design: fourth-grade students’ investigations in aerospace. International Journal of STEM Education, 2(1), 1-18. https://doi.org/10.1186/s40594-015-0027-7
European Space Agency [ESA]. (s.f.). ESA - What is a CANSAT? http://www.esa.int/Education/CANSAT/What_is_a_CANSAT
Faroukh, Y. M., AL-Ali, A. A. M. A., Adwan, A. O., Alhammadi, A., Shaikh, M. M., Faroukh, A. M., & Femini, I. (2019, Julio). Environmental Monitoring using CANSAT. 2019 6th International Conference on Space Science and Communication (IconSpace) (pp. 239-244). IEEE. https://doi.org/10.1109/IconSpace.2019.8905942
Finagro. (2021). El momento del Agro. https://www.finagro.com.co/noticias/el-momento-del-agro
General Wire Spring Company. (s.f.). Conical compression springs. https://www.generalwirespring.com/conical-compression-springs.html
Honrado, J. L. E., Solpico, D. B., Favila, C. M., Tongson, E., Tangonan, G. L., & Libatique, N. J. C. (2017). UAV imaging with low-cost multispectral imaging system for precision agriculture applications. GHTC 2017 - IEEE Global Humanitarian Technology Conference, Proceedings, 1-7. https://doi.org/10.1109/GHTC.2017.8239328
Jaramillo, O. A., & Briñez, R. C. (2019). Design of a CANSAT for measuring environmental variables. Revista Especializada en Tecnología e Ingeniería, 13(2), 31-38. https://core.ac.uk/download/pdf/322589509.pdf
Matplotlib. (s.f.). Matplotlib: Visualization with Python. https://matplotlib.org/
Metternicht, G. (2003). Vegetation indices derived from high-resolution airborne videography for precision crop management. International Journal of Remote Sensing, 24(14), 2855-2877. https://doi.org/10.1080/01431160210163074
Molla, W. (2018). Design and development of CANSAT: Transmit weather data from troposphere level to the ground station. Addis Ababa University. http://213.55.95.56/bitstream/handle/123456789/15777/Waleligne%20Molla.pdf?sequence=1&isAllowed=y
Mouser Electronics. (s.f.). DHT11 Humidity & Temperature Sensor [Archivo PDF]. https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf
Nordic Semiconductor. (2008). nRF24 Single Chip Transceiver [Archivo PDF]. https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf
OmniVision Technologies Inc. (s.f.). OV7670 Datasheet [Archivo PDF]. https://www.alldatasheet.com/datasheet-pdf/pdf/312420/OMNIVISION/OV7670.html
Parody, A., & Zapata, E. de J. (2018). Agricultura de precisión en Colombia utilizando teledetección de alta resolución. Suelos Ecuatoriales, 48(1-2), 41-49. http://unicauca.edu.co/revistas/index.php/suelos_ecuatoriales/article/view/94
PJRC. (s.f.a). Teensy 3,5 Development Board. https://www.pjrc.com/store/teensy35.html
PJRC. (s.f.b). Teensy Software Setup. https://www.pjrc.com/teensy/tutorial.html
Python. (s.f.). tkinter-Python interface to Tcl/Tk. https://docs.python.org/es/3/library/tkinter.html
Rodríguez, J. S., Botero, A. Y., Lopera, D. V., Gálvez, J., & Botero, F. (2021). Experimental approach for the evaluation of the performance of a satellite module in the CANSAT form factor for in-situ monitoring and remote sensing applications. Hindawi International Journal of Aerospace Engineering, 1-31. https://www.hindawi.com/journals/ijae/2021/8868797/
Sparkfun. (s.f.). Arduino Comparison Guide. https://www.sparkfun.com/advanced_arduino_comparison_guide
Tjandra, K. (2020). CANSAT 2020 Preliminary Design Review (PDR) Outline Team ID 1360. Manchester CANSAT Project. http://www.CANSATcompetition.com/docs/teams/CANSAT2020_4920_pdr_v01.pdf
Tortora, P. G. (1996). Fairchild’s Dictionary of Textiles. Bloomsbury Academic.
Trivelli, L., Apicella, A., Chiarello, F., Rana, R., Fantoni, G., & Tarabella, A. (2019). From precision agriculture to Industry 4.0: Unveiling technological connections in the agrifood sector. British Food Journal, 121(8), 1730-1743. https://doi.org/10.1108/BFJ-11-2018-0747
Tzinis, I. (2015). NASA official website. https://www.nasa.gov/directorates/heo/scan/engineering/technology/txt_accordion1.html
U-blox. (2017). NEO-6 u-blox 6 GPS Modules. U-blox, 25. https://www.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf
Universidad Nacional Autónoma de México [UNAM]. (s.f.). ¿Qué es un CANSAT? Programa Espacial Universitario. http://peu.unam.mx/descripcionCANSAT.html
Vishay Semiconductors. (2019). Designing the VEML6070 UV Light Sensor. https://www.vishay.com/docs/84310/designingveml6070.pdf
Wertz, J. R., Everett, D. F., & Pusschell, J. J. (2011). Space mission engineering: The new SMAD. Microcosm Press.
Yang, W., Wang, S., Zhao, X., Zhang, J., & Feng, J. (2015). Greenness identification based on HSV decision tree. Information Processing in Agriculture, 2(3-4), 149-160. https://doi.org/10.1016/j.inpa.2015.07.003
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Escuela de Postgrados de la Fuerza Aérea Colombiana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Assignment of Copyrights
Authors assign Ciencia y Poder Aéreo journal the exclusive rights (reproduction, distribution, public communication, and transformation) to exploit and commercialize their work, in whole or in part, in all the formats and modalities of present or future exploitation, in all languages, throughout the life of the work and throughout the world.
All contents published in Ciencia y Poder Aéreo journal are licensed under a Creative Commons Attribution 4.0 International License, whose complete information is available at http://creativecommons.org/licenses/by/4.0/
Under the terms of this license, users are free to download, print, extract, archive, distribute and publicly communicate the content of articles, provided that proper credit is granted to authors and Ciencia y Poder Aéreo, scientific journal of the Graduate School of the Colombian Air Force. Except when otherwise indicated, this site and its contents are licensed under a Creative Commons Attribution 4.0 International License.
For other uses not considered under this license it is required to contact the Director or the Editor of the journal at the e-mail address cienciaypoderaereo1@gmail.com.
The Graduate School of the Colombian Air Force and this publication are not responsible for the concepts expressed in the articles, including the metadata or the affiliation stated by authors. This is the full responsibility of the authors.