Intelligent Techniques for Identification and Tracking of Meteorological Phenomena that Could Affect Flight Safety

Authors

  • Jimmy Anderson Florez Zuluaga Universidad Pontificia Bolivariana
  • Jesús Francisco Vargas
  • Juddy K. Reina

DOI:

https://doi.org/10.18667/cienciaypoderaereo.559

Keywords:

Air Control Systems, Meteorological Analysis, Artificial Intelligence, Satellite Pictures, Next Generation Systems, ATC, Air Safety, Meteorological Risk, Cumulonimbus, Tower Cumulus, Air Risk Management.

Abstract

In aviation, the meteorological phenomena are one of the most important aspects to be considered in all fly stages, from planning to landing. The development of nowcasting systems in meteorology applied to aviation can support the decision-making process for air traffic controllers and pilots, facilitating the meteorological variables analysis and providing a first interpretation available to all the users of the air system.
For this reason, the Center for Technological Development for Defense (CETAD) has as main objective in this document to describe the results of the development of a systematized methodology that uses intelligent techniques for the detection and identification and monitoring of any type of training that by its characteristics can represent a risk to the aviation, generating in turn information of support to the air traffic controller.
For this, it is necessary to detect the convective formations, to classify them, to filter the noise and to individualize them. These types of processes can be automated through the intelligent analysis of products available through the MET Service of Air Navigation Services Providers, like the Colombian Civil Aviation (UAEAC) and the multispectral satellite imagery.
After detection, a group of characteristics allowing the developmet of efficient algorithms capable of monitoring the behavior of the convective formation must be determined. That allows generating forecasts of the characteristics of the convective systems in the short term and this requires to know other variables such as the wind motion in the areas of analysis. This kind of applications integrated with air traffic control systems would reduce the risks due to meteorological factors.  
This work brings a procedure based on the combination of different techniques like histograms identification and neural network processing, among others, to identify a potentially hazardous phenomenon and to follow it in time and space. The use of a user-friendly interface let any user have a phenomena interpretation for supporting the decision-making process.

Downloads

Download data is not yet available.

Author Biography

  • Jimmy Anderson Florez Zuluaga, Universidad Pontificia Bolivariana
    Candidato a docotor en Telecomunicaciones Universidad Pontificia Bolivariana
    Magister en TIC
    Ing. Electronico UNAL - FAC

References

Cheng, H. (2017) Cloud tracking using clusters of feature points for accurate solar irradiance nowcasting. Renew. Energy, vol. 104, pp. 281 -289.

https://doi.org/10.1016/j.renene.2016.12.023

Roy, C; Kovordányi, R. (2012) Tropical cyclone track forecasting techniques - A review. Atmos. Res., vol. 104-105, pp. 40-69.

https://doi.org/10.1016/j.atmosres.2011.09.012

Henke, D.; Smyth, R; Haffke, C. and Magnusdottir, G. (2012) Automated analysis of the temporal behavior of the double Intertropical Convergence Zone over the east Pacific. Remote Sens. Environ., vol. 123, pp. 418-433.

https://doi.org/10.1016/j.rse.2012.03.022

Sieglaffi J.; Cronce, L.; Feltz, W. (2014) Improving satellite-based convective cloud growth monitoring with visible optical depth retrievals. J. Appl. Meteorol. Climatol. 53(2). pp. 506-520.

https://doi.org/10.1175/JAMC-D-13-0139.1

Parikh, J.; DaPonte, J.; Vitale, J. and Tselioudis, G. (1999) An evolutionary system for recognition and tracking of synoptic-scale storm systems. Pattern Recognit. Lett. 20(11 -13). pp. 1389-1396.

https://doi.org/10.1016/S0167-8655(99)00110-5

Henken, C; Schmeits, M.; Deneke, H. and Roebeling, R. (2011) Using MSG-SEVIRI cloud physical properties and weather radar observations for the detection of Cb/TCu clouds. J. Appl. Meteorol. Climatol. 50(7). pp. 1587-1600.

https://doi.org/10.1175/2011JAMC2601.1

Yin, S.; Qian, Y. and Gong, M. (2017) Unsupervised Hierarchical Image Segmentation through Fuzzy Entropy Maximization. Pattern Recognit., vol. 68. pp. 245-259.

https://doi.org/10.1016/j.patcog.2017.03.012

Mahani, S.; Gao, X.; Sorooshian, S.; and Imam, B. (2000). Estimating cloud top height and spatial displacement from scan-synchronous GOES images using simplified IR-based stereoscopic analysis. J. Geophys. Res. Atmos. 105(D12). pp. 15597-15608.

https://doi.org/10.1029/2000JD900064

Rillo, V; Zoilo, A.; Mercogliano, R; and Galdi, C. (2015). Detection and forecast of convective clouds using MSG data for aviation support. 2nd IEEE Int. Work. Metrol. Aerospace, Me-troaerosp. 2015 - Proc., no. Cmcc, pp. 301 -305.

https://doi.org/10.1109/MetroAeroSpace.2015.7180672

Chethan, H.; Raghavendra, R.; and Hemantha, G. (2009). Texture Based Approach for Cloud Classification Using SVM. 2009 IEEE Int. Conf. Adv. RecentTechnol. Commun. Comput. (ARTCom '09), pp. 688-690.

https://doi.org/10.1109/ARTCom.2009.43

Flnke.C.; Butts, 1; Mills, R.;and Grlmalla.M. (2013). Enhancing the security of aircraft surveillance In the next generation air traffic control system. Int. J. Crlt. Infrastruct. Prot. 6(1). pp. 3-11.

https://doi.org/10.1016/j.ijcip.2013.02.001

Ahlstrom, U. (2005). Work domain analysis for air traffic controller weather displays. J. Safety Res. 36(2). pp. 159-169.

https://doi.org/10.1016/j.jsr.2005.03.001

Jeon, D.; Eun, Y.; and Kim, H. (2015). Estimation fusion with radar and ADS-B for air traffic surveillance. Int. J. Control. Autora Syst. 13(2). pp. 336-345.

https://doi.org/10.1007/s12555-014-0060-1

Ahlstrom, U. and Jaggard, E. (2010). Automatic Identification of risky weather objects In line of flight (AIRWOLF). Transp. Res. PartC Emerg.Technol. 18(2). pp. 187-192.

https://doi.org/10.1016/j.trc.2009.06.001

Ulfbratt, E.; and McConvIlle, J. (2008). Comparison of the SE-SAR and NextGen Concepts of Operations. NCOIC Aviat. IPT, vol. 1.0, p. 22.

Brooker, P. (2008). SESAR and NextGen: Investing in new paradigms. J. Navlg. 61 (2). pp. 195-208.

https://doi.org/10.1017/S0373463307004596

Martinez, J. (1998). El futuro de la gestión, la gestión del futuro. Dlr. y progreso, no. 160, pp. 82-86.

Cahill, J. (2016). A Safety Impact Quantification Approach for Early Stage Innovative Aviation Concepts Application to a Third Pilot Adaptive Automation Concept, no. November, 2016.

Capa, E. (2015) Universidad Politécnica De Madrid.

Ramírez-Fernández, S.; Llzarazo-Salcedo, I. (2014). Clasificación digital de masas nubosas a partir de Imágenes meteorológicas usando algoritmos de aprendizaje de maquina. Rev. Fac. Ing. 1(73). pp. 43-57.

Stone, M.;and Anderson, J. (1989). Advances ¡n prlmary-radar technology. Lincoln Lab. J., pp. 363-380.

Weber, M. (1986). Assessment of ASR-9 Weather Channel Performance : Analysis and Simulation.

Welpert, A.; Flannesen, R. (2008). Enhanced weather Information for air traffic controllers using comprehensive sensor and data assimilation procedures. Eur. Radar Conf., no. October, pp. 184-187.

Flarrlngton, J. (2009). Weather services In the NextGen Era. Aviat. Int. News, no. January, pp. 34-37.

McCrea, M.; Sherali, FI.; Tranl, A. (2008). A probabilistic framework for weather-based rerouting and delay estimations within an Airspace Planning model.Transp. Res. Part C Emerg. Technol. 16(4). pp. 410-431.

https://doi.org/10.1016/j.trc.2007.09.001

Wiggins, M. (2014). Differences In situation assessments and prospective diagnoses of simulated weather radar returns amongst experienced pilots. Int. J. Ind. Ergon. 44(1). pp. 18-23.

https://doi.org/10.1016/j.ergon.2013.08.006

Peak, J. and Tag, P. (1994). Segmentation of satellite Imagery using hierarchical thresholding and neural networks. Journa of Applied Meteorology, vol. 33. pp. 605-616.

https://doi.org/10.1175/1520-0450(1994)033<0605:SOSIUH>2.0.CO;2

Desbois, M.; Seze, G. and Szejwach, G. (1982). Automatic classification of clouds on Meteosat imagery - Application to high-level clouds. Journal of Applied Meteorology. 21 (3). pp. 401-412.

https://doi.org/10.1175/1520-0450(1982)021<0401:ACOCOM>2.0.CO;2

Azimi-Sadjadl, M.; and Zekavat, S. (2000). Cloud classification using support vector machines. IGARSS 2000. IEEE 2000 Int. Geosci. Remote Sens. Symp. Tak. Pulse Planet Role Remote Sens. Manag. Environ. Proc. (Cat. No.00CFI37120). vol. 2. pp. 669-671.

Bedard Jr., A. (2015). AVIATION METEOROLOGY | Aviation Weather Flazards, Second Edi., vol. 1. Elsevier.

https://doi.org/10.1016/B978-0-12-382225-3.00075-X

Senhaml. (1959). Guía De Meteorología General.

Smoot, D. (2015) Global Flidrology And Climate Center. [Online]. Available: https://weather.msfc.nasa.gov/GOES/satellite-description.html.

Zaccolo, M. (2002). Good Features to Track. Methods Mol. Biol. 178(Dec). pp. 255-8.

Shibata, M.; Yasuda, Y; and Ito, M. (2008). Moving object detection for active camera based on optical flow distortion. Proc. 17th World Congr., pp. 14720-14725.

https://doi.org/10.3182/20080706-5-KR-1001.02492

S. N. de M. e Flldrologla, Capitulo 13. Pronóstico Meteorológico. In: GUIA DE METEOROLOGIA GENERAL, pp. 1-16.

(2012) Manual del Sistema Mundial de Proceso de Datos y de Predicción.

Matas, J.; Galambos.C.; and Klttler, J. (2000). Robust Detection of Lines Using the Progressive Probabilistic Plough Transform. Comput. Vis. Image Underst. 78(1) pp. 119-137.

https://doi.org/10.1006/cviu.1999.0831

Puca, S.; Biron, D.; De Leonlbus, L; Rosci, R; and Zauli, F. Improvements on numérica I'object'detection and nowcasting of convective cell with the use of seviri data (ir and wv channels ) and neural technlqhes.

Published

2017-12-06

Issue

Section

Operational Safety and Aviation Logistics

How to Cite

Intelligent Techniques for Identification and Tracking of Meteorological Phenomena that Could Affect Flight Safety. (2017). Ciencia Y Poder Aéreo, 12(1), 24-35. https://doi.org/10.18667/cienciaypoderaereo.559