Intelligent Techniques for Identification and Tracking of Meteorological Phenomena that Could Affect Flight Safety
DOI:
https://doi.org/10.18667/cienciaypoderaereo.559Keywords:
Air Control Systems, Meteorological Analysis, Artificial Intelligence, Satellite Pictures, Next Generation Systems, ATC, Air Safety, Meteorological Risk, Cumulonimbus, Tower Cumulus, Air Risk Management.Abstract
In aviation, the meteorological phenomena are one of the most important aspects to be considered in all fly stages, from planning to landing. The development of nowcasting systems in meteorology applied to aviation can support the decision-making process for air traffic controllers and pilots, facilitating the meteorological variables analysis and providing a first interpretation available to all the users of the air system.For this reason, the Center for Technological Development for Defense (CETAD) has as main objective in this document to describe the results of the development of a systematized methodology that uses intelligent techniques for the detection and identification and monitoring of any type of training that by its characteristics can represent a risk to the aviation, generating in turn information of support to the air traffic controller.
For this, it is necessary to detect the convective formations, to classify them, to filter the noise and to individualize them. These types of processes can be automated through the intelligent analysis of products available through the MET Service of Air Navigation Services Providers, like the Colombian Civil Aviation (UAEAC) and the multispectral satellite imagery.
After detection, a group of characteristics allowing the developmet of efficient algorithms capable of monitoring the behavior of the convective formation must be determined. That allows generating forecasts of the characteristics of the convective systems in the short term and this requires to know other variables such as the wind motion in the areas of analysis. This kind of applications integrated with air traffic control systems would reduce the risks due to meteorological factors.
This work brings a procedure based on the combination of different techniques like histograms identification and neural network processing, among others, to identify a potentially hazardous phenomenon and to follow it in time and space. The use of a user-friendly interface let any user have a phenomena interpretation for supporting the decision-making process.
Downloads
References
Cheng, H. (2017) Cloud tracking using clusters of feature points for accurate solar irradiance nowcasting. Renew. Energy, vol. 104, pp. 281 -289.
https://doi.org/10.1016/j.renene.2016.12.023
Roy, C; Kovordányi, R. (2012) Tropical cyclone track forecasting techniques - A review. Atmos. Res., vol. 104-105, pp. 40-69.
https://doi.org/10.1016/j.atmosres.2011.09.012
Henke, D.; Smyth, R; Haffke, C. and Magnusdottir, G. (2012) Automated analysis of the temporal behavior of the double Intertropical Convergence Zone over the east Pacific. Remote Sens. Environ., vol. 123, pp. 418-433.
https://doi.org/10.1016/j.rse.2012.03.022
Sieglaffi J.; Cronce, L.; Feltz, W. (2014) Improving satellite-based convective cloud growth monitoring with visible optical depth retrievals. J. Appl. Meteorol. Climatol. 53(2). pp. 506-520.
https://doi.org/10.1175/JAMC-D-13-0139.1
Parikh, J.; DaPonte, J.; Vitale, J. and Tselioudis, G. (1999) An evolutionary system for recognition and tracking of synoptic-scale storm systems. Pattern Recognit. Lett. 20(11 -13). pp. 1389-1396.
https://doi.org/10.1016/S0167-8655(99)00110-5
Henken, C; Schmeits, M.; Deneke, H. and Roebeling, R. (2011) Using MSG-SEVIRI cloud physical properties and weather radar observations for the detection of Cb/TCu clouds. J. Appl. Meteorol. Climatol. 50(7). pp. 1587-1600.
https://doi.org/10.1175/2011JAMC2601.1
Yin, S.; Qian, Y. and Gong, M. (2017) Unsupervised Hierarchical Image Segmentation through Fuzzy Entropy Maximization. Pattern Recognit., vol. 68. pp. 245-259.
https://doi.org/10.1016/j.patcog.2017.03.012
Mahani, S.; Gao, X.; Sorooshian, S.; and Imam, B. (2000). Estimating cloud top height and spatial displacement from scan-synchronous GOES images using simplified IR-based stereoscopic analysis. J. Geophys. Res. Atmos. 105(D12). pp. 15597-15608.
https://doi.org/10.1029/2000JD900064
Rillo, V; Zoilo, A.; Mercogliano, R; and Galdi, C. (2015). Detection and forecast of convective clouds using MSG data for aviation support. 2nd IEEE Int. Work. Metrol. Aerospace, Me-troaerosp. 2015 - Proc., no. Cmcc, pp. 301 -305.
https://doi.org/10.1109/MetroAeroSpace.2015.7180672
Chethan, H.; Raghavendra, R.; and Hemantha, G. (2009). Texture Based Approach for Cloud Classification Using SVM. 2009 IEEE Int. Conf. Adv. RecentTechnol. Commun. Comput. (ARTCom '09), pp. 688-690.
https://doi.org/10.1109/ARTCom.2009.43
Flnke.C.; Butts, 1; Mills, R.;and Grlmalla.M. (2013). Enhancing the security of aircraft surveillance In the next generation air traffic control system. Int. J. Crlt. Infrastruct. Prot. 6(1). pp. 3-11.
https://doi.org/10.1016/j.ijcip.2013.02.001
Ahlstrom, U. (2005). Work domain analysis for air traffic controller weather displays. J. Safety Res. 36(2). pp. 159-169.
https://doi.org/10.1016/j.jsr.2005.03.001
Jeon, D.; Eun, Y.; and Kim, H. (2015). Estimation fusion with radar and ADS-B for air traffic surveillance. Int. J. Control. Autora Syst. 13(2). pp. 336-345.
https://doi.org/10.1007/s12555-014-0060-1
Ahlstrom, U. and Jaggard, E. (2010). Automatic Identification of risky weather objects In line of flight (AIRWOLF). Transp. Res. PartC Emerg.Technol. 18(2). pp. 187-192.
https://doi.org/10.1016/j.trc.2009.06.001
Ulfbratt, E.; and McConvIlle, J. (2008). Comparison of the SE-SAR and NextGen Concepts of Operations. NCOIC Aviat. IPT, vol. 1.0, p. 22.
Brooker, P. (2008). SESAR and NextGen: Investing in new paradigms. J. Navlg. 61 (2). pp. 195-208.
https://doi.org/10.1017/S0373463307004596
Martinez, J. (1998). El futuro de la gestión, la gestión del futuro. Dlr. y progreso, no. 160, pp. 82-86.
Cahill, J. (2016). A Safety Impact Quantification Approach for Early Stage Innovative Aviation Concepts Application to a Third Pilot Adaptive Automation Concept, no. November, 2016.
Capa, E. (2015) Universidad Politécnica De Madrid.
Ramírez-Fernández, S.; Llzarazo-Salcedo, I. (2014). Clasificación digital de masas nubosas a partir de Imágenes meteorológicas usando algoritmos de aprendizaje de maquina. Rev. Fac. Ing. 1(73). pp. 43-57.
Stone, M.;and Anderson, J. (1989). Advances ¡n prlmary-radar technology. Lincoln Lab. J., pp. 363-380.
Weber, M. (1986). Assessment of ASR-9 Weather Channel Performance : Analysis and Simulation.
Welpert, A.; Flannesen, R. (2008). Enhanced weather Information for air traffic controllers using comprehensive sensor and data assimilation procedures. Eur. Radar Conf., no. October, pp. 184-187.
Flarrlngton, J. (2009). Weather services In the NextGen Era. Aviat. Int. News, no. January, pp. 34-37.
McCrea, M.; Sherali, FI.; Tranl, A. (2008). A probabilistic framework for weather-based rerouting and delay estimations within an Airspace Planning model.Transp. Res. Part C Emerg. Technol. 16(4). pp. 410-431.
https://doi.org/10.1016/j.trc.2007.09.001
Wiggins, M. (2014). Differences In situation assessments and prospective diagnoses of simulated weather radar returns amongst experienced pilots. Int. J. Ind. Ergon. 44(1). pp. 18-23.
https://doi.org/10.1016/j.ergon.2013.08.006
Peak, J. and Tag, P. (1994). Segmentation of satellite Imagery using hierarchical thresholding and neural networks. Journa of Applied Meteorology, vol. 33. pp. 605-616.
https://doi.org/10.1175/1520-0450(1994)033<0605:SOSIUH>2.0.CO;2
Desbois, M.; Seze, G. and Szejwach, G. (1982). Automatic classification of clouds on Meteosat imagery - Application to high-level clouds. Journal of Applied Meteorology. 21 (3). pp. 401-412.
https://doi.org/10.1175/1520-0450(1982)021<0401:ACOCOM>2.0.CO;2
Azimi-Sadjadl, M.; and Zekavat, S. (2000). Cloud classification using support vector machines. IGARSS 2000. IEEE 2000 Int. Geosci. Remote Sens. Symp. Tak. Pulse Planet Role Remote Sens. Manag. Environ. Proc. (Cat. No.00CFI37120). vol. 2. pp. 669-671.
Bedard Jr., A. (2015). AVIATION METEOROLOGY | Aviation Weather Flazards, Second Edi., vol. 1. Elsevier.
https://doi.org/10.1016/B978-0-12-382225-3.00075-X
Senhaml. (1959). Guía De Meteorología General.
Smoot, D. (2015) Global Flidrology And Climate Center. [Online]. Available: https://weather.msfc.nasa.gov/GOES/satellite-description.html.
Zaccolo, M. (2002). Good Features to Track. Methods Mol. Biol. 178(Dec). pp. 255-8.
Shibata, M.; Yasuda, Y; and Ito, M. (2008). Moving object detection for active camera based on optical flow distortion. Proc. 17th World Congr., pp. 14720-14725.
https://doi.org/10.3182/20080706-5-KR-1001.02492
S. N. de M. e Flldrologla, Capitulo 13. Pronóstico Meteorológico. In: GUIA DE METEOROLOGIA GENERAL, pp. 1-16.
(2012) Manual del Sistema Mundial de Proceso de Datos y de Predicción.
Matas, J.; Galambos.C.; and Klttler, J. (2000). Robust Detection of Lines Using the Progressive Probabilistic Plough Transform. Comput. Vis. Image Underst. 78(1) pp. 119-137.
https://doi.org/10.1006/cviu.1999.0831
Puca, S.; Biron, D.; De Leonlbus, L; Rosci, R; and Zauli, F. Improvements on numérica I'object'detection and nowcasting of convective cell with the use of seviri data (ir and wv channels ) and neural technlqhes.
Downloads
Published
Issue
Section
License
Assignment of Copyrights
Authors assign Ciencia y Poder Aéreo journal the exclusive rights (reproduction, distribution, public communication, and transformation) to exploit and commercialize their work, in whole or in part, in all the formats and modalities of present or future exploitation, in all languages, throughout the life of the work and throughout the world.
All contents published in Ciencia y Poder Aéreo journal are licensed under a Creative Commons Attribution 4.0 International License, whose complete information is available at http://creativecommons.org/licenses/by/4.0/
Under the terms of this license, users are free to download, print, extract, archive, distribute and publicly communicate the content of articles, provided that proper credit is granted to authors and Ciencia y Poder Aéreo, scientific journal of the Graduate School of the Colombian Air Force. Except when otherwise indicated, this site and its contents are licensed under a Creative Commons Attribution 4.0 International License.
For other uses not considered under this license it is required to contact the Director or the Editor of the journal at the e-mail address cienciaypoderaereo1@gmail.com.
The Graduate School of the Colombian Air Force and this publication are not responsible for the concepts expressed in the articles, including the metadata or the affiliation stated by authors. This is the full responsibility of the authors.