Models of prognosis of time series: proposal for aeronautical logistic support for the super tucano fleet

Authors

  • María Del Rosario Calle Rodríguez Universidad de Ibagué

DOI:

https://doi.org/10.18667/cienciaypoderaereo.525

Keywords:

Demand, Forecast, Inventories, Logistic Support, Residual Error, Time Series

Abstract

The prognosis becomes indispensable in any productive organization, considering that it is the basis of long-term planning in any functional area and therefore a vital tool for management decision-making. The art of forecasting aims to predict the demand for a product or service in such a way that the productive system is efficient and responds to the needs in quantity and opportunity. In the first instance, this article makes a bibliographic tour to describe the context of the forecast, then a documentary revision is carried out in terms of projections of various industrial sectors, and finally the particularity of the forecast is presented in the Colombian Air Force specifically with a proposal for the projection of the demand of the aeronautical logistic support of the fleet of the Super Tucano A-29 team in Combat Air Command No. 2; concluding that the suggested  methodology is not far from the current trends and on the contrary brings together most of them, selecting the best model independently for each component of the fleet, a fact that guarantees a correct inference and that when meeting the established conditions can be extrapolated and standardized for the aeronautical logistic support of the Colombian Air Force, a situation that if presented would generate a high budgetary impact for the Air Force, for the Ministry of Defense and therefore for national public finances, because the costs of logistic support would reflect a decrease from previous periods.

Downloads

Download data is not yet available.

Author Biography

  • María Del Rosario Calle Rodríguez, Universidad de Ibagué

    Ingeniera industrial Universidad de Ibagué. Oficial Fuerza Aérea Colombiana. Especialidad en Abastecimientos Aeronáuticos.

References

Anderson David R, S. D. (2005). Estadistica para Administracion y Economia . Mexico DF: Thomson.

Bernanke, & Boivin. (2003). Monetary Policy in a Data-rich Environment. Journal of Monetary Economics, 525-546.

https://doi.org/10.1016/S0304-3932(03)00024-2

Bernanke, B., Boivin, J., & Eliazs, P. (2005). The Quarterly Jorunal of Economics, 387-422.

https://doi.org/10.1162/qjec.2005.120.1.387

Bourgeois, J., & Barnes, J. (1979). Does Advertising Increase Alcohol Consumption? Journal of Advertising Research, 19-29.

Bratina, D., & Faganel, A. (2008). Forecasting the Primary Demand for a Beer Brand Using Time Series Analysis. Organizacija,Volume 41, Number 3,.

https://doi.org/10.2478/v10051-008-0013-7

Brubaker, K., & McCuen, R. (1990). "Level of significance selection in engineering analysis. Journal of Professional Issues in Engineering ASCE Vol. 116 No. 4,, 375-387.

https://doi.org/10.1061/(ASCE)1052-3928(1990)116:4(375)

Chase Richard B., A. N. (2000). Administracion de Produccion . Santa Fe De Bogota: Mc Graw Hill.

Dekimpe, M., & Hannsens, D. (1995). The Persistence of Marketing Effects on Sales. Marketing Science, 1-21.

https://doi.org/10.1287/mksc.14.1.1

Demirov, E., & Pinardi, N. (2002). Simulation of the Mediterranean Sea circulation from 1979 to 1993: Part I. The interannual variability, 33-34, 23-50.

https://doi.org/10.1016/S0924-7963(02)00051-9

Dobricic, S. P. (2006). Daily oceanographic analyses by the Mediterranean basin scale assimilation system. Ocean Sci. Discuss., 3, 1977-1998.

https://doi.org/10.5194/osd-3-1977-2006

Dominick, S. (2009). Microeconomia. Mexico DF: Mc Graw Hill.

Fragkakis, N., Lambropoulos, S., & Pantouvakis, J. (2010). A cost estimate method for bridge superstructures using regression analysis and bootstrap. Organization, technology and management in construction. An international journal, 182-190.

Franke, G., & Wilcox, G. (1987). Alcoholic Beverage Advertising & Its Impact on Model Selection. Applied Mathematics & Computation 34 (November), 22-30.

https://doi.org/10.1080/00913367.1987.10673082

Franses, P. (1991). Primary Dem& for Beer in The Netherl&s: An Application of ARMAX Model Specification. Journal of Market research 28, 240-245.

https://doi.org/10.1177/002224379102800212

Gouviea N. and Fletcher T. (2000). Time series analysis of air pollution and mortality: Effects by cause, age and socioeconomic status. J. Epidemiol. Commun. H., 54, 750-755.

https://doi.org/10.1136/jech.54.10.750

Gujarati, D. (1999). Essentials of Econometrics. New York: Irwin Mc Graw Hill.

Hegazy, T., & Ayed, A. (1998). Neural network model for parametric cost estimation of highway projects. Journal of Construction Engineering and Management, Vol. 124 No.3, 210-218.

https://doi.org/10.1061/(ASCE)0733-9364(1998)124:3(210)

Herzberg, A., & Frew, L. (2003). Can public policy be influenced? Environmetrics, 14, 1-10.

https://doi.org/10.1002/env.556

Hoyos Gomez, F. (Mayo de 2014). Presentacion PASLO CACOM-2 2014. Apiay, Meta, Colombia.

Keane, M. (1997). Modeling Heterogeneity & State Dependence in Consumer Choice Behaviour. Journal of Bussiness & Economic Statistics, 310-327.

https://doi.org/10.1080/07350015.1997.10524709

Klemm, O., & Lange, H. (1999). Trends of air pollution in the Fichtelgebrige Mountains, Bavaria. Environ Sci. &Pollut, 193-199.

https://doi.org/10.1007/BF02987325

Konstantinidis, D., & Maravas, A. (2003). Egnatia Motorway concrete bridges statistics. ASECAP Study and Information Days proceedings of the international conference in Portoroz Slovenia, 92-109.

Kyriakidis, J. (2001). Stochastic modeling of atmospheric pollution: a spatial time series framework. Part II: application to monitoring monthly sulfate deposition over Europe. Atmos Environ 35, 2339-2348.

https://doi.org/10.1016/S1352-2310(00)00540-9

Lanteri, L. (2010). Economia Vol XXXIII, No. 66.

Lee, C. k. (2002). Multifractal characteristics in air pollutant concentration time series. Water Air Soil Poll. 135, 389-409.

https://doi.org/10.1023/A:1014768632318

Leeflang, & Van Dujin, J. (1982). The Use of Regional Data in Marketing Models:The Dem& for Beer in The Netherl&. European Research 10, (January): 29-40.

Litterman, R. (1985). Forecasting with Bayesian Vector Autoregressions-five Years of Experience. Minneapolis: Federal Reserve Bank of Minneapolis.

Lucas, R. (1976). Econometric Policy Evaluation: a critique. New York: En Brunner K y A Meltzer.

https://doi.org/10.1016/S0167-2231(76)80003-6

Lucas, y. S. (1979). After Keynesian Macroeconomics. Minneapolis: Federal Reserve Bank of Minneapolis..

McKee, D. (1993). Health effects associated with ozone and nitrogen dioxide exposure. . Water Air Soil Poll, 11-35.

https://doi.org/10.1007/BF00480811

Mobley, K. (1999). Root Cause and failure analysis. United of States of America: Butterworth-Heinemann.

Modarres, R., & Khosravi Dehkordi, A. (2005). Daily air pollution time series analysis of Isfahan City. Int. J. Environ. Sci Tech, 259-267.

https://doi.org/10.1007/BF03325885

Murphy, A. (1988). Skill score based on the mean square error and their relation to mthe correlation coefficient. Monthly weather review, 2417-2424.

https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2

Murphy, A. (1993). What is a good forecast? Weather forecasting, 281-293.

https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2

Pinardi, N. A. (2003). The Mediterranean ocean Forecasting System: First Phase of implementation (1998-2000).

https://doi.org/10.5194/angeo-21-3-2003

Geophisicae, vol.21, 189-204.

Prescott, E. (1977). Should Control Theory be usde for Economic Stabilization. New York: Brunner, K y A Meltzer.

https://doi.org/10.1016/0167-2231(77)90017-3

Roberts, S. (2003). Combining data from multiple monitors in air pollution mortality time series studies. Atmos. Environ., 37, 3317-3322.

https://doi.org/10.1016/S1352-2310(03)00289-9

Salcedo, R., Alvim Ferraz, M., Alves, C., & Martins. (1999). Time series analysis of air pollution data. Atmos. Environ., 33, 2361-2372.

https://doi.org/10.1016/S1352-2310(99)80001-6

Schwartz, J., & Marcus, A. (1990). Mortality and air pollution in London: a time series analysis. Am. J. Epidem., 131, 85-194.

https://doi.org/10.1093/oxfordjournals.aje.a115473

Seetharaman, P. (1999). Investigating Household State Dependence Effects across categories. Journal Of Market Research, 488-500.

https://doi.org/10.1177/002224379903600407

Sims, C. (1992). Interpreting the Macroeconomic Time Series Facts: the effects of monetary policy. European Economic Review, 975-1000.

https://doi.org/10.1016/0014-2921(92)90041-T

Skamris, M., & Flyvbjerg, B. (1997). Inaccuracy of traffic forecasts and cost estimates on large transport projects. Transport Policy, Vol. 4 No. 3, 141-146.

https://doi.org/10.1016/S0967-070X(97)00007-3

Theil, H. (1971). Principles of Econometrics. Nueva York: J. Wiley.

Tonani, M. (2007). A high resolution free surface model on the Mediterranean Sea. Ocean Sci. Discuss.

https://doi.org/10.5194/osd-4-213-2007

Tonani, M., Pinardi, N., Fratianni, C., & Dobricic, S. (2007). Forecast and analysis assessment through skill scores. Oceans Science Discussions, 189-212.

https://doi.org/10.5194/osd-4-189-2007

Touloumi G., A. R. (2004). Analysis of health outcome time series data in epidemiological studies. Environmetrics, 101-117.

https://doi.org/10.1002/env.623

Voigt, K., & Bruggemann, R. (2004). Data analysis of environmental air pollutant monitoring systems in Europe. Environmetrics, 15, 577-596.

https://doi.org/10.1002/env.653

Published

2016-10-31

Issue

Section

Operational Safety and Aviation Logistics

How to Cite

Models of prognosis of time series: proposal for aeronautical logistic support for the super tucano fleet. (2016). Ciencia Y Poder Aéreo, 11(1). https://doi.org/10.18667/cienciaypoderaereo.525