Simulation of a Two Stage Rocket Trajectory to Place a Nanosatellite into Orbit

Authors

  • Jhonathan Orlando Murcia Piñeros Universidad Nacional de Colombia
  • José Gregorio Portilla Barbosa Universidad Nacional de Colombia

DOI:

https://doi.org/10.18667/cienciaypoderaereo.139

Keywords:

Flight Path, Liquid Rocket, Low Earth Orbit (LEO), Nano - Satellite

Abstract

This article aims to study the possibility of launching a two-stage liquid propellant rocket in order to put into orbit a 4 Kg payload, equivalent to the mass of a 3U CubeSat. It presents a study with a conceptual design of the carrier rocket implementing a computer optimization code in order to reduce mass and increase takeoff speed. As a launch site the Air Force Base named Grupo Aéreo del Oriente (GAORI) in Marandua, State of Vichada, Colombia, was chosen, due to the fact that there is research in rocketry currently carried out there, and that the place has been used by universities for development of such investigations. Results were input into a computer code in FORTRAN developed at the National Astronomical Observatory of the National University of Colombia in order to study the flight path of the rocket during its ascent phase and entrance into orbit.

Downloads

Download data is not yet available.

Author Biographies

  • Jhonathan Orlando Murcia Piñeros, Universidad Nacional de Colombia

    Aeronautical Engineer with Master degree in Astronomy Sciences, National Astronomic Observatory, National University of Colombia. PhD student in Engineering and Space Technologies-Space Mechanic and Control

  • José Gregorio Portilla Barbosa, Universidad Nacional de Colombia

    PhD. Director National Astronomic Observatory. National

References

Fleeman, E. (2006). Tactical Missile Design. 2Ed. AIAA, Virginia.

Fostescue, P. Stark, J., y Swinerd, G. (2003). Spacecraft Systems Engineering. 3 Ed. Londres: Wiley.

Galli, P., y Rochus, S. (2008). Mision Design for the Cubesat OUTFI-1. Tesis en Ingeniería Civil - Electromecánica, Universidad de Liege.

Gutiérrez, R. (2012). Programa Espacial FAC, Avances y Proyección. Cuarto Congreso Colombiano en Ciencia y Tecnología Aeroespacial CICTA 2012. Bogotá: Universidad Distrital Francisco José de Caldas

Humble, R., Henry, G., y Larson, W. (1995). Space Propulsion Analysis and Design. New York: Mc Graw Hill.

Joya, R. (2007). Desarrollo de Nuevas Tecnologías, Primer Satélite Colombiano en el Espacio, Libertad 1. Rev. Ciencia y Tecnología, Vol. 25 (2), pp. 46-51. Bogotá: Colciencias.

Minzner, R. A., Champion K.S.W., y Pond, H.L. (1959). The ARDC model atmosphere, 1959. Air Force Surveys in Geophysics N°115. Cambridge.

Portilla, J. (2009). Elementos de Astronomía de Posición. Bogotá: UNIBIBLOS.

Sutton, G., y Biblatz, O. (2010). Rocket Propulsion Elements, 8 Ed. New York: John Wiley and Sons.

Tewari, A. (2006). Atmospheric and Space Flight Dynamics. Berlín: Birkhauser.

Urrego, A. (2009). Investigaciones en Cohetería Experimental. Misión Séneca, Lanzamiento del Cohete Ainkaa 1. Tesis de Pregrado en Ingeniería Mecánica. Bogotá: Universidad de los Andes.

Weiland, C. (2010). Computational Space Flight Mechanics. Berlín: Springer.

https://doi.org/10.1007/978-3-642-13583-5

Zipfel, P. (2007). Modeling and Simulation of Aerospace Vehicle Dynamics. 2Ed. AIAA, Virginia

https://doi.org/10.2514/4.862182

Issue

Section

Technology and Innovation

How to Cite

Simulation of a Two Stage Rocket Trajectory to Place a Nanosatellite into Orbit. (2014). Ciencia Y Poder Aéreo, 9(1), 107-114. https://doi.org/10.18667/cienciaypoderaereo.139