Desempeño psicofísico en un vuelo espacial corto. Revisión narrativa de la literatura
DOI:
https://doi.org/10.18667/cienciaypoderaereo.752Palabras clave:
vuelo espacial, astronautas, fisiología, medicina aeroespacial, ColombiaResumen
Desarrollar actividades en el espacio presenta retos psicofisiológicos que dificultan el desempeño humano, por lo que su entendimiento es fundamental para la planeación de misiones suborbitales, orbitales y de exploración. El ambiente de microgravedad, sumado a la exposición a las condiciones habitacionales en naves espaciales, exige una integración holística de los campos del conocimiento que estudian el rendimiento humano para llevar a cabo diversas actividades de investigación en ciencias espaciales para beneficio de las personas en la Tierra, además de tareas de mantenimiento de equipos, navegación y supervivencia, pero sobre todo para el diseño de programas que conserven la salud y preparen a los astronautas para la reentrada a la atmósfera, con el fin de disminuir la morbilidad y facilitar la aclimatación a la superficie terrestre. Se realiza, por tanto, una revisión sistemática de la literatura publicada en el periodo 1969-2020 mediante la búsqueda en bases de datos como ProQuest, EBSCO, Ovid, arXiv.org, SAGE, BioMed, ClincalKey, Scielo, ScienceDirect, Scopus, SpringerLink, Web of Science, Wiley, PubMed y Google Scholar, y se escogen los artículos que describan los cambios fisiológicos más relevantes en una secuencia de lanzamiento, vuelo orbital y reentrada en los sistemas nervioso central, cardiovascular, respiratorio, musculoesquelético y hematológico, inducidos por la microgravedad y la dinámica de una operación espacial corta.
Descargas
Referencias
Akima, H., Kawakami, Y., Kubo, K., Sekiguchi, C., Ohshima, H., Miyamoto, A., & Fukunaga, T. (2000). Effect of short-duration spaceflight on thigh and leg muscle volume. Medicine and Science in Sports and Exercise, 32(10), 1743–1747. https://doi.org/10.1097/00005768-200010000-00013
Antonsen, E. L., Myers, J. G., Boley, L., Arellano, J., Kerstman, E., Kadwa, B., Buckland, D. M., & Van Baalen, M. (2022). Estimating medical risk in human spaceflight. Npj Microgravity, 8(1), 8. https://doi.org/10.1038/s41526-022-00193-9
Bacal, K., Billica, R., & Bishop, S. (2003). Neurovestibular symptoms following space flight. Journal of Vestibular Research: Equilibrium and Orientation, 13(2–3), 93–102.
Barratt, M. R., Baker, E. S., & Pool, S. L. (2020). Principles of clinical medicine for space flight. In Principles of Clinical Medicine for Space Flight. Springer Nature. https://doi.org/10.1007/978-1-4939-9889-0
Black, F. O., Paloski, W. H., Doxey-Gasway, D. D., & Reschke, M. F. (1995). Vestibular plasticity following orbital spaceflight: Recovery from postflight postural instability. Acta Oto-Laryngologica, 115(S520), 450–454. https://doi.org/10.3109/00016489509125296
Blue, R. S., Riccitello, J. M., Tizard, J., Hamilton, R. J., & Vanderploeg, J. M. (2012). Commercial spaceflight participant G-force tolerance during centrifuge-simulated suborbital flight. Aviation Space and Environmental Medicine, 83(10), 929–934. https://doi.org/10.3357/ASEM.3351.2012
Bock, O. (1994). Joint position sense in simulated changed-gravity environments. Aviation Space and Environmental Medicine, 65(7), 621–626.
Bock, O. (1998). Problems of sensorimotor coordination in weightlessness. Brain Research Reviews, 28(1–2), 155–160. https://doi.org/10.1016/S0165-0173(98)00035-6
Buckey, J. C., Lane, L. D., Levine, B. D., Watenpaugh, D. E., Wright, S. J., Moore, W. E., Gaffney, F. A., & Blomqvist, C. G. (1996). Orthostatic intolerance after spaceflight. Journal of Applied Physiology, 81(1), 7–18. https://doi.org/10.1152/jappl.1996.81.1.7
Caillot-Augusseau, A., Lafage-Proust, M. H., Soler, C., Pernod, J., Dubois, F., & Alexandre, C. (1998). Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight (Euromir 95). Clinical Chemistry, 44(3), 578–585. https://doi.org/10.1093/clinchem/44.3.578
Campbell, M. R., & Garbino, A. (2011). History of suborbital spacefl ight: Medical and performance issues. Aviation Space and Environmental Medicine, 82(4), 469–474. https://doi.org/10.3357/ASEM.2921.2011
Chang, D. G., Healey, R. M., Snyder, A. J., Sayson, J. V., Macias, B. R., Coughlin, D. G., Bailey, J. F., Parazynski, S. E., Lotz, J. C., & Hargens, A. R. (2016). Lumbar spine paraspinal muscle and intervertebral disc height changes in astronauts after long-duration spaceflight on the International Space Station. Spine, 41(24), 1917–1924. https://doi.org/10.1097/BRS.0000000000001873
Chang, E. Y. W. (2020). From aviation tourism to suborbital space tourism: A study on passenger screening and business opportunities. Acta Astronautica, 177(March), 410–420. https://doi.org/10.1016/j.actaastro.2020.07.020
Christensen, J. M., & Talbot, J. M. (1986). A review of the psychological aspects of space flight. Aviation Space and Environmental Medicine, 57(3), 203–212.
Clément, G. (2011). Fundamentals of space medicine. In Space technology library (2nd ed., Issue 17). published jointly by Microcosm Press ;Springer.
Clément, G. (2011). Fundamentals of Space Medicine. In Fundamentals of Space Medicine (Vol. 23). Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-9905-4
Cooke, W. H., Ames IV, J. E., Crossman, A. A., Cox, J. F., Kuusela, T. A., Tahvanainen, K. U. O., Moon, L. B., Drescher, J., Baisch, F. J., Mano, T., Levine, B. D., Blomqvist, C. G., & Eckberg, D. L. (2000). Nine months in space: Effects on human autonomic cardiovascular regulation. Journal of Applied Physiology, 89(3), 1039–1045. https://doi.org/10.1152/jappl.2000.89.3.1039
Cox, J. F., Tahvanainen, K. U. O., Kuusela, T. A., Levine, B. D., Cooke, W. H., Mano, T., Iwase, S., Saito, M., Sugiyama, Y., Ertl, A. C., Biaggioni, I., Diedrich, A., Robertson, R. M., Zuckerman, J. H., Lane, L. D., Ray, C. A., White, R. J., Pawelczyk, J. A., Buckey, J. C., … Eckberg, D. L. (2002). Influence of microgravity on astronauts’ sympathetic and vagal responses to Valsalva’s manoeuvre. Journal of Physiology, 538(1), 309–320. https://doi.org/10.1113/jphysiol.2001.012574
Crucian, B., Simpson, R. J., Mehta, S., Stowe, R., Chouker, A., Hwang, S.-A., Actor, J. K., Salam, A. P., Pierson, D., & Sams, C. (2014). Terrestrial stress analogs for spaceflight associated immune system dysregulation. Brain, Behavior, and Immunity, 39, 23–32.
Cruse, H., Dean, J., Heuer, H., & Schmidt, R. A. (1990). Utilization of Sensory Information for Motor Control. In Relationships Between Perception and Action (pp. 43–79). Springer. https://doi.org/10.1007/978-3-642-75348-0_4
De la Torre, G. G. (2014). Cognitive neuroscience in space. Life, 4(3), 281–294.
Drummer, C., Norsk, P., & Heer, M. (2001). Water and sodium balance in space. American Journal of Kidney Diseases, 38(3), 684–690. https://doi.org/10.1053/ajkd.2001.27765
Ertl, A. C., Diedrich, A., Biaggioni, I., Levine, B. D., Robertson, R. M., Cox, J. F., Zuckerman, J. H., Pawelczykd, J. A., Ray, C. A., Buckey, J. C., Lane, L. D., Shiavi, R., Gaffney, F. A., Costa, F., Holt, C., Blomqvist, C. A., Eckberg, D. L., Baisch, F. J., & Robertson, D. (2002). Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. Journal of Physiology, 538(1), 321–329. https://doi.org/10.1113/jphysiol.2001.012576
Eversmann, T., Gottsmann, M., Uhlich, E., Ulbrecht, G., von Werder, K., & Scriba, P. C. (1978). Increased secretion of growth hormone, prolactin, antidiuretic hormone, and cortisol induced by the stress of motion sickness. Aviation Space and Environmental Medicine, 49(1 I), 53–57. https://doi.org/10.5282/ubm/epub.8290
Fowler, B., Bock, O., & Comfort, D. (2000). Is dual-task performance necessarily impaired in space? Human Factors, 42(2), 318–326. https://doi.org/10.1518/001872000779656507
Fowler, B., Comfort, D., & Bock, O. (2000). A review of cognitive and perceptual-motor performance in space. Aviation Space and Environmental Medicine, 71(9 II SUPPL.).
Greason, J., & Bennet, J. (2019). The economics of space: an industry ready to lauch (Issue June). https://reason.org/wp-content/uploads/economics-of-space.pdf
Harm, D. L., Sandoz, G. R., & Stern, R. M. (2002). Changes in gastric myoelectric activity during space flight. Digestive Diseases and Sciences, 47(8), 1737–1745. https://doi.org/10.1023/A:1016480109272
Heer, M., De Santo, N. G., Cirillo, M., & Drummer, C. (2001). Body mass changes, energy, and protein metabolism in space. American Journal of Kidney Diseases, 38(3), 691–695. https://doi.org/10.1053/ajkd.2001.27767
Hockey, G. R. J., & Hamilton, P. (1983). The cognitive patterning of stress states. In Stress and fatigue in human performance.
Hughson, R. L., Shoemaker, J. K., Blaber, A. P., Arbeille, P., Greaves, D. K., Pereira-Junior, P. P., & Xu, D. (2012). Cardiovascular regulation during long-duration spaceflights to the International Space Station. Journal of Applied Physiology, 112(5), 719–727. https://doi.org/10.1152/japplphysiol.01196.2011
Hyatt, K. H., & West, D. A. (1977). Reversal of bedrest induced orthostatic intolerance by lower body negative pressure and saline. Aviation Space and Environmental Medicine, 48(2), 120–124.
Iwasaki, K. ichi, Ogawa, Y., Kurazumi, T., Imaduddin, S. M., Mukai, C., Furukawa, S., Yanagida, R., Kato, T., Konishi, T., Shinojima, A., Levine, B. D., & Heldt, T. (2021). Long-duration spaceflight alters estimated intracranial pressure and cerebral blood velocity. Journal of Physiology, 599(4), 1067–1081. https://doi.org/10.1113/JP280318
Jennings, R. T., Murphy, D. M. F., Ware, D. L., Aunon, S. M., Moon, R. E., Bogomolov, V. V., Morgun, V. V., Voronkov, Y. I., Fife, C. E., Boyars, M. C., & Ernst, R. D. (2006). Medical qualification of a commercial spaceflight participant: Not your average astronaut. Aviation Space and Environmental Medicine, 77(5), 475–484.
Johnston, R. S., Dietlein, L. F., & Berry, C. A. (1975). Biomedical results of Apollo (Vol. 368). Scientific and Technical Information Office, National Aeronautics and Space ….
Kanas, N., & Manzey, D. (2008). Space Psychology and Psychiatry. In Space Psychology and Psychiatry (Vol. 22). Springer Science & Business Media. https://doi.org/10.1007/978-1-4020-6770-9
Khossravi, E. A., & Hargens, A. R. (2021). Visual disturbances during prolonged space missions. In Current opinion in ophthalmology (Vol. 32, Issue 1, pp. 69–73). NLM (Medline). https://doi.org/10.1097/ICU.0000000000000724
Kluis, L., & Diaz-Artiles, A. (2021). Revisiting decompression sickness risk and mobility in the context of the SmartSuit, a hybrid planetary spacesuit. Npj Microgravity, 7(1). https://doi.org/10.1038/s41526-021-00175-3
Kotovskaia, A. R., Vil’-Vil’iams, I., Gavrilova, L. N., Elizarov, S. I., & Uliatovskii, N. V. (2001). Tolerance of +Gx by MIR 22 -- 27 main crew in space flights. Aviakosmicheskaia i Ekologicheskaia Meditsina = Aerospace and Environmental Medicine, 35(2), 45–50.
Kramer, L. A., Sargsyan, A. E., Hasan, K. M., Polk, J. D., & Hamilton, D. R. (2012). Orbital and intracranial effects of microgravity: Findings at 3-T MR imaging. Radiology, 263(3), 819–827. https://doi.org/10.1148/radiol.12111986
Kubis, J. F., McLaughlin, E. J., Jackson, J. M., Rusnak, R., McBride, G., & Saxon, S. V. (1977). Task and work performance on Skylab missions 2, 3, and 4: Time and motion study-experiment M151. Biomedical Results from Skylab, 136–154.
Lang, T. F., Leblanc, A. D., Evans, H. J., & Lu, Y. (2006). Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. Journal of Bone and Mineral Research, 21(8), 1224–1230. https://doi.org/10.1359/jbmr.060509
Lang, T., LeBlanc, A., Evans, H., Lu, Y., Genant, H., & Yu, A. (2004). Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. Journal of Bone and Mineral Research, 19(6), 1006–1012. https://doi.org/10.1359/JBMR.040307
Leach, C. S., Alfrey, C. P., Suki, W. N., Leonard, J. I., Rambaut, P. C., Inners, L. D., Smith, S. M., Lane, H. W., & Krauhs, J. M. (1996). Regulation of body fluid compartments during short-term spaceflight. Journal of Applied Physiology, 81(1), 105–116. https://doi.org/10.1152/jappl.1996.81.1.105
LeBlanc, A., Rowe, R., Schneider, V., Evans, H., & Hedrick, T. (1995). Regional muscle loss after short duration spaceflight. Aviation Space and Environmental Medicine, 66(12), 1151–1154.
Lee, A. G., Mader, T. H., Gibson, C. R., Tarver, W., Rabiei, P., Riascos, R. F., Galdamez, L. A., & Brunstetter, T. (2020). Author Correction: Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update (npj Microgravity, (2020), 6, 1, (7), 10.1038/s41526-020-0097-9). Npj Microgravity, 6(1), 1–10. https://doi.org/10.1038/s41526-020-00114-8
Leone, G., De Schonen, S., & Lipshits, M. (1998). Prolonged weightlessness, reference frames and visual symmetry detection. Acta Astronautica, 42(1–8), 281–286. https://doi.org/10.1016/S0094-5765(98)00125-8
Ley, W., Wittmann, K., & Hallmann, W. (2009). Handbook of Space Technology. In Handbook of Space Technology (Vol. 22). John Wiley & Sons. https://doi.org/10.1002/9780470742433
Liu, Q., Zhou, R. L., Zhao, X., Chen, X. P., & Chen, S. G. (2016). Acclimation during space flight: Effects on human emotion. Military Medical Research, 3(1), 1317–1323. https://doi.org/10.1186/S40779-016-0084-3
Macdonald, M., & Badescu, V. (2014). The international handbook of space technology. In The International Handbook of Space Technology. Springer. https://doi.org/10.1007/978-3-642-41101-4
Manzey, D., Lorenz, B., Heuer, H., & Sangals, J. (2000). Impairments of manual tracking performance during spaceflight: More converging evidence from a 20-day space mission. Ergonomics, 43(5), 589–609. https://doi.org/10.1080/001401300184279
Manzey, D., Lorenz, B., & Poljakov, V. (1998). Mental performance in extreme environments: results from a performance monitoring study during a 438-day spaceflight. Ergonomics, 41(4), 537–559.
Mathieu, P., Poirier, P., Pibarot, P., Lemieux, I., & Després, J. P. (2009). Visceral obesity the link among inflammation, hypertension, and cardiovascular disease. In Hypertension (Fifth edit, Vol. 53, Issue 4). CRC Press, Taylor & Francis Group. https://doi.org/10.1161/HYPERTENSIONAHA.108.110320
McIntyre, J., Lipshits, M., Zaoui, M., Berthoz, A., & Gurfinkel, V. (2001). Internal reference frames for representation and storage of visual information: The role of gravity. Acta Astronautica, 49(3–10), 111–121. https://doi.org/10.1016/S0094-5765(01)00087-X
Meck, J. V., Waters, W. W., Ziegler, M. G., DeBlock, H. F., Mills, P. J., Robertson, D., & Huang, P. L. (2004). Mechanisms of postspaceflight orthostatic hypotension: Low α 1-adrenergic receptor responses before flight and central autonomic dysregulation postflight. American Journal of Physiology - Heart and Circulatory Physiology, 286(4 55-4), H1486–H1495. https://doi.org/10.1152/ajpheart.00740.2003
Morey-Holton, E. R., Schnoes, H. K., DeLuca, H. F., Phelps, M. E., Klein, R. F., Nissenson, R. H., & Arnaud, C. D. (1988). Vitamin D metabolites and bioactive parathyroid hormone levels during Spacelab 2. Aviation Space and Environmental Medicine, 59(11), 1038–1041.
MORIN, L. (1961). Space physiology. In Laval médical (Vol. 32). Oxford University Press, USA.
Mulavara, A. P., Feiveson, A. H., Fiedler, J., Cohen, H., Peters, B. T., Miller, C., Brady, R., & Bloomberg, J. J. (2010). Locomotor function after long-duration space flight: Effects and motor learning during recovery. Experimental Brain Research, 202(3), 649–659. https://doi.org/10.1007/s00221-010-2171-0
Musk, E. (2022). Polaris dawn. Polaris Program. https://polarisprogram.com/dawn/
NASA. (1977). Biomedical Results from SKYLAB. In Biomedical (Vol. 377). Scientific and Technical Information Office, National Aeronautics and Space …. http://www.scribd.com/doc/44234494/Bio-Medical-Results-From-Skylab%5Cnhttp://lsda.jsc.nasa.gov/books/skylab/skylabcover.htm
NASA. (2019). NASA Spaceflight Human-System Standard Volume 2: Human Factors, Habitability, and Environmental Health. In NASA Technical Standards (Vol. 2). https://standards.nasa.gov/human-factors-and-health
Nicogossian, A. E., Williams, R. S., Huntoon, C. L., Doarn, C. R., Polk, J. D., & Schneider, V. S. (2016). Space physiology and medicine: From evidence to practice, fourth edition. In Space Physiology and Medicine: From Evidence to Practice, Fourth Edition. Springer. https://doi.org/10.1007/978-1-4939-6652-3
Prisk, G. K., Guy, H. J. B., Elliott, A. R., Deutschman, R. A., & West, J. B. (1993). Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity. Journal of Applied Physiology, 75(1), 15–26. https://doi.org/10.1152/jappl.1993.75.1.15
Rimmer, D. W., Dijk, D.-J., Ronda, J. M., Hoyt, R., & Pawelczyk, J. A. (1999). Efficacy of Liquid Cooling Garments To Minimize Heat Strain During Space Shuttle Deorbit and Landing. Medicine & Science in Sports & Exercise, 31(Supplement), S305. https://doi.org/10.1097/00005768-199905001-01508
Robert, G., & Hockey, J. (1997). Compensatory control in the regulation of human performance under stress and high workload: A cognitive-energetical framework. Biological Psychology, 45(1–3), 73–93. https://doi.org/10.1016/S0301-0511(96)05223-4
Rutherford, A. (1987). Handbook of perception and human performance. Vol 1: Sensory processes and perception. Vol 2: Cognitive processes and performance. In Applied Ergonomics (Vol. 18, Issue 4, p. 340). https://doi.org/10.1016/0003-6870(87)90144-x
Shykoff, B. E., Farhi, L. E., Olszowka, A. J., Pendergast, D. R., Rokitka, M. A., Eisenhardt, C. G., & Morin, R. A. (1996). Cardiovascular response to submaximal exercise in sustained microgravity. Journal of Applied Physiology, 81(1), 26–32. https://doi.org/10.1152/jappl.1996.81.1.26
Sibonga, J. D., Evans, H. J., Sung, H. G., Spector, E. R., Lang, T. F., Oganov, V. S., Bakulin, A. V., Shackelford, L. C., & LeBlanc, A. D. (2007). Recovery of spaceflight-induced bone loss: Bone mineral density after long-duration missions as fitted with an exponential function. Bone, 41(6), 973–978. https://doi.org/10.1016/j.bone.2007.08.022
Small, R. L., Oman, C. M., & Jones, T. D. (2012). Space shuttle flight crew spatial orientation survey results. Aviation Space and Environmental Medicine, 83(4), 383–387. https://doi.org/10.3357/ASEM.3180.2012
Smith, S. M., Krauhs, J. M., & Leach, C. S. (1997). Chapter 6 Regulation of Body Fluid Volume and Electrolyte Concentrations in Spaceflight. In Advances in Space Biology and Medicine (Vol. 6, Issue C, pp. 123–165). Elsevier. https://doi.org/10.1016/S1569-2574(08)60081-7
Smith, S. M., Lane, H. W., & Zwart, S. R. (2020). Spaceflight metabolism and nutritional support. In Principles of Clinical Medicine for Space Flight (pp. 413–439). Springer. https://doi.org/10.1007/978-1-4939-9889-0_13
Smith, S. M., Wastney, M. E., O’Brien, K. O., Morukov, B. V., Larina, I. M., Abrams, S. A., Davis-Street, J. E., Oganov, V., & Shackelford, L. C. (2005). Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the Mir Space Station. Journal of Bone and Mineral Research, 20(2), 208–218. https://doi.org/10.1359/JBMR.041105
Stepanek, J., Blue, R. S., & Parazynski, S. (2019). Space Medicine in the Era of Civilian Spaceflight. In New England Journal of Medicine (Vol. 380, Issue 11, pp. 1053–1060). https://doi.org/10.1056/nejmra1609012
Thorton, W., & Rummel, J. (1975). Muscular deconditionning and its prevention in space flight. NASA TM X-58154 - The Proceedings of Skylab Sciences Symposium, 1, 403–426.
Trappe, T., Trappe, S., Lee, G., Widrick, J., Fitts, R., & Costill, D. (2006). Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. Journal of Applied Physiology, 100(3), 951–957. https://doi.org/10.1152/japplphysiol.01083.2005
Van Vuuren, L. J. (1987). Engineering Psychology and Human Performance. In SA Journal of Industrial Psychology (4th Editio, Vol. 13, Issue 1). Psychology Press. https://doi.org/10.4102/sajip.v13i1.457
Whedon, G. D., Lutwak, L., Rambaut, P. C., Whittle, M. W., Smith, M. C., Reid, J., Leach, C., Stadler, C. R., & Sanford, D. D. (1977). Mineral and nitrogen metabolic studies, experiment M071. Biomedical Results from Skylab, 164–174.
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2022 Escuela de Postgrados de la Fuerza Aérea Colombiana
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Declaración de cesión de los derechos de autor a la revista
Los autores ceden la Revista los derechos de explotación (reproducción, distribución, comunicación pública y transformación) para explotar y comercializar la obra, entera o en parte, en todos los formatos y modalidades de explotación presentes o futuros, en todos los idiomas, por todo el periodo de vida de la obra y por todo el mundo.
Todos los contenidos publicados en la revista científica Ciencia y Poder Aéreo están sujetos a la licencia reconocimiento 4.0 Internacional de Creative Commons, cuyo texto completo se puede consultar en http://creativecommons.org/licenses/by/4.0/
La licencia permite a cualquier usuario descargar, imprimir, extraer, archivar, distribuir y comunicar públicamente este artículo, siempre y cuando el crédito se dé a los autores de la obra: a los autores del texto y a Ciencia y Poder Aéreo, Revista Científica de la Escuela de Postgrados de la Fuerza Aérea Colombiana. Excepto cuando se indique lo contrario, el contenido en este sitio es licenciado bajo una licencia Creative Commons Atribución 4.0 internacional.
Para usos de los contenidos no previstos en estas normas de publicación es necesario contactar directamente con el director o editor de la revista a través del correo cienciaypoderaereo@epfac.edu.
La Escuela de Postgrados de la Fuerza Aérea Colombiana y esta publicación no son responsables de los conceptos emitidos en los artículos, ni de los metadatos aportados ni de las filiaciones que los autores declaren, ya que esta es responsabilidad plena de los autores.