Tracking y Multitracking Radar

Autores/as

  • Jimmy Anderson Flórez Zuluaga Fuerza Aérea Colombiana

DOI:

https://doi.org/10.18667/cienciaypoderaereo.9

Palabras clave:

Predicción de trayectorias, procesamiento de señales radar, racking radar

Resumen

Los Sistemas de Defensa Aérea y del Sistema de Control de Mando (C2) son sistemas críticos en el que cada etapa afecta el rendimiento y el error medio del sistema de todos. El Centro de Desarrollo Tecnológico Aeroespacial para la Defensa - CETAD ha estado trabajando para desarrollar técnicas de rastreo para satisfacer las necesidades de la Fuerza Aérea de Colombia, como se explica en este artículo.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Jimmy Anderson Flórez Zuluaga, Fuerza Aérea Colombiana

    Capitán de la Fuerza Aérea Colombiana. Magíster en TIC, Investigador del Centro de Desarrollo Tecnológico aeroespacial para la Defensa (CETAD CACOM 5).

Referencias

Air Traffic Control Association (2011). Air Traffic Control Association - 56th Air Traffic Control Association. Annual Conference 2011.

Barrios & Motai. (2011). Improving Estimation of Vehicle's Trayectory Using the Latest Global positioning System Whit Kalman Filtering. IEEE Transactions on Signal Processing. USA: Univ. of Vermont, Burlington.

https://doi.org/10.1109/TIM.2011.2147670

Centro de Desarrollo Tecnológico Aeroespacial para la Defensa.(2013). Documentación Sistema de Comando y Control Colombiano Horus. 1 ed. Rionegro: autor.

CETAD (2012). Imagen Señal Cruda - Sistema de Comando y Control Colombiano. Rionegro: Autor.

CETAD-FAC. (2009). Imagen Señal Procesada Con Tracking - Sistema de Comando y Control Colombiano. Rionegro: Autor.

Chen, S.H., Hsu. C. W. & Huang, S. C. (2012, Sept). Recursive estimation of vehicle position by using navigation sensor fusion. In 12th International Conference on ITS Telecommunications, ITST 2012, pp. 532-536.

Ching, I. P. W. L., Yongzhi, L. Chin, & D. Mital. (1998) Neurofuzzy techniques for airborne target tracking. In International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES. Vol. 2, pp. 251-257. NJ, United States: Piscataway.

Cobano, J. A., Conde, R., Alejo, D., & Ollero, A. (2011, May). Path planning based on Genetic Algorithms and the Monte-Carlo method to avoid aerial vehicle collisions under uncertainties. IEEE International Conference on Robotics and Automation, pp. 4429-4434. Seville, Spain: Univ. of Seville.

https://doi.org/10.1109/ICRA.2011.5980246

Deng, Z.L. Y., Gao, L. Mao, Y. Li, & Hao, G., (2005, Oct.) New approach to information fusion steady-state Kalman filtering. Automatica. Vol. 41(10), pp. 1695-1707. Department of Automation, Heilongjiang University, Harbin, People's Republic of China.

https://doi.org/10.1016/j.automatica.2005.04.020

El Abed, Dubuisson, & Béréziat. (2012, Apr). Spatio-temporal targetmeasure association using an adaptive geometrical approach. Pattern Recognition Letters. Vol. 33 (6), pp. 765-774. Laboratoire d'Informatique de Paris 6, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France.

https://doi.org/10.1016/j.patrec.2011.11.018

Evans, T. (1997). Airborne situation awareness. In IEE Colloquium (Digest). No. 169, pp. 5/1-5/13.

Evans, T. (1997). Airborne situation awareness. In IEE Colloquium (Digest). No. 169, pp. 5/1-5/13.

Gong, C. & McNally, D. (2004). A methodology for automated trajectory prediction analysis. In Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference. Vol. 1, pp. 432-445.NASA Ames.

https://doi.org/10.2514/6.2004-4788

Jiménez Martin, J. L, (2005). Nuevas técnicas de generación de señal para sistemas radar de alata resolución y baja probabilidad de error. Madrid, España: Universidad Politécnica de Madrid.

Khan, R. H. (1996). Target detection and tracking with HF radar using ISAR techniques. In IEEE National Radar Conference - Proceedings., pp. 94-99. NJ, United States: Piscataway.

https://doi.org/10.1109/NRC.1996.510663

Khrebtov, P., Pöttker, A., Max S. & Vossick, M. (2007). A wireless location system for sensing the relative position between mining vehicles. In Conference Record - IEEE Instrumentation and Measurement Technology Conference.

https://doi.org/10.1109/IMTC.2007.379211

Kolawole, M. (2002). Decision Theory. In Radar Systems, Peak Detection and Tracking. Elsevier.

https://doi.org/10.1016/B978-075065773-0/50014-5

Liu J. & Deng, Z. (2012). Information Fusion Kalman Predictor for Two-Sensor Multichannel ARMA Signal System with Time-Delayed Measurements. Procedia Engineerin. Vol. 29, pp. 623-629.

https://doi.org/10.1016/j.proeng.2012.01.014

Matsunaga, K., Senoguchi A., & Koga, T. (2012). Validation test of Downlink Aircraft Parameters via SSR mode S experimental system. In Proceedings International Radar Symposium, pp. 193-198.

https://doi.org/10.1109/IRS.2012.6233314

Miquel, T. F, Mora-Camino, & Loscos, J.-M (2006). Path stretching and tracking for time-based aircraft spacing at meter fix. In Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference 2006. Vol. 1, pp. 411-418.

https://doi.org/10.2514/6.2006-6064

Neri, F. C. (2007). Electronic Defense Systems.

Nolan, M. S. (1998). Fundamentals of Air Traffic Control. Third Edit. OACI - Organización de los Sistemas de Sensores de Vigilancia (1998). Manual Sobre Ensayo de Sistemas del Radar de Vigilancia. Primera Ed: Autor.

_______(1998). Metodología para los ensayos de actuación de los sistemas radar. In Manual Sobre Ensayo de Sistemas del Radar de Vigilancia. Primera Ed.: Autor.

Pelosi, M., Kopp C., & Brown, M. (2012). Range-limited UAV trajectory using terrain masking under radar detection risk. Applied Artificial Intelligenc. Vol. 26 (8), pp. 743-759.

https://doi.org/10.1080/08839514.2012.713308

Ran, C. & Deng, Z. (2012, Jun). Self-tuning weighted measurement fusion Kalman filtering algorithm," Computational Statistics & Data Analysis. Vol. 56 (6), pp. 2112-2128.

https://doi.org/10.1016/j.csda.2012.01.001

_______________. (2011, Aug.) Self-tuning distributed measurement fusion Kalman estimator for the multi-channel ARMA signal. Signal Processing. Vol. 91(8), pp. 2028-204.

https://doi.org/10.1016/j.sigpro.2011.03.010

Richards, M. A. (2005). 2.3 Clutter. In: Fundamentals of Radar Signal Procesing. Georgia Tech Research Institute

Rushby, J. (1994). Critical System Properties. Vol. 43(2), pp. 189-219. National Aeronautics and Space Administration Langley. Research Center and the US Naval Research Laboratory.

https://doi.org/10.1016/0951-8320(94)90065-5

Skolnik, M. I. (2001). 5.3 Detection Criteria. In Introduction to Radar System. Third Edit. MacGraw-Hill.

____________ (1990) Radar Handbook. Second Ed. McGraw Hill.

____________ (2008). Chapter 7. Automatic Detection Tracking ande sensor integration. In Radar Handbook. Third Edit. New York.

Stakkeland, M. & Brekke, E. F. (2009). Tracking of targets with state dependent measurement errors using recursive BLUE filter, pp. 2052-2061. Univ. Grad. Center, Kjeller, Norway.

Tomlin, C., (1998). Hybrid Control of Air Traffic Management System. Ph.D. Dissertation. U california.

Víctor Baptista, U. E.; Frencil, C.; Val, Joao Bosco Ribeiro Do.; & R. S. M. E. (2012, Apr). Filtragem Utilizando Imm-Ekf-Blue Em Modelos De Giro Constante Con Taxa De Giro Desconhecida. Universidad Estadual de Campinas.

Wang X. & Sun, S.L. (2012). Measurement feedback self-tuning weighted measurement fusion Kalman filter for systems with correlated noises. Journal of Applied Mathematics.

https://doi.org/10.1155/2012/324296

Zhang, P. W., Qi, & Deng, Z. (2012). Multi-channel ARMA Signal Covariance Intersection Fusion Kalman Predictor. Procedia Engineering. Vol. 29, pp. 609-615. International Workshop on Information and Electronics Engineering: Elsevier.

https://doi.org/10.1016/j.proeng.2012.01.012

Descargas

Publicado

2013-09-01

Número

Sección

Tecnología e Innovación

Cómo citar

Tracking y Multitracking Radar. (2013). Ciencia Y Poder Aéreo, 8(1), 81-90. https://doi.org/10.18667/cienciaypoderaereo.9