Factores que intervienen en el desempeño de un piloto bajo diferentes condiciones de vuelo – revisión de tema
DOI:
https://doi.org/10.18667/cienciaypoderaereo.2Palabras clave:
Biotelemetría, carga de trabajo, desempeño, fatiga, medidas fisiológicas, pilotoResumen
El propósito de este articulo es determinar cuáles factores influyen en la alteración de algunas medidas fisiológicas y mentales específicas presentadas en los pilotos durante el vuelo y cómo éstas intervienen en su comportamiento, teniendo en cuenta la variable operativa de carga de trabajo, importante en los protocolos de investigación de la aviación.Para estudiar esta variable a fondo tanto en la aviación militar y la comercial es necesario revisar, comparar y contrastar diferentes escenarios, condiciones, aeronaves e individuos, que permitan diferenciar cómo se experimentan estos cambios que a corto, mediano y largo plazo, intervienen en el estado de salud del individuo, llevando en ocasiones a consecuencias nefastas, surgiendo de esta manera cada vez más la necesidad de controlar estas medidas, transmitiéndolas en lo posible en tiempo real para su posterior monitoreo y análisis por parte del especialista, proporcionando de esta forma el incremento en el control y prevención de accidentes aéreos.
Descargas
Referencias
Adams, R., & Ericsson, A. (2000). Introduction to cognitive processes of expert pilots. Journal of Human Performance in Extreme Environments, 5(1), p. 5.
https://doi.org/10.7771/2327-2937.1006
Balldin, U. I. (1995). New advances in physiological measurements during high-G: Technology. Current concepts on Gprotection research and development. Neuilly-sur-Seine, France: AGARD. AGARD-LS-202.
Benavides Edson, C. D. (2007). Diseño de un sistema de monitoreo cardiaco para pilotos en vuelo para el Centro de Medicina Aeroespacial de la Fuerza Aérea Colombiana. Universidad Militar Nueva Granada, Bogotá - Colombia.
Broeks, M. (2012). Exploring electrodermal activity, experienced workload and performance during simulator training, p 17. University of Twente, Faculty of behavioral sciences department cognitive psychology and ergonomics.
Caldwell Jr, J. A., Caldwell, J. L., Lewis, J. A., Jones, H. D., & Reardon, M. J. (1996). An In-Flight Investigation of the Efficacy of Dextroamphetamine for the Sustainment of Helicopter Pilot Performance. Tech. rep., DTIC Document. U.S. Army Aeromedical Research Laboratory Fort Rucker, Alabama, United States.
Caldwell, J. (s.f.). Uso de Estimulantes en Operaciones Aéreas Prolongadas. Ejército y Fuerza Aérea de los Estados Unidos.
Callan, D. J. (1999). Psychophysiological Measures for Human Attention Lapses During Simulated Aircraft Operations. Tech. rep., DTIC Document. The Department of the Air Force, Pennsylvania State University. United States.
https://doi.org/10.1037/e445192005-001
Causse, M., Péran, P., Dehais, F., Caravasso, C. F., Zeffiro, T., Sabatini, U., & Pastor, J. (2013). Affective decision making under uncertainty during a plausible aviation task: An fMRI study. NeuroImage, 71, pp. 19-29. NeuroImage. El Sevier. France.
https://doi.org/10.1016/j.neuroimage.2012.12.060
Colombiana, C. F. (2010). Manual de Fisiología de Vuelo. Público, p. 49. Colombia. Comando Fuerza Aérea Colombiana
De Rivecourt, M., Kuperus, M., Post, W., & Mulder, L. (2008). Cardiovascular and eye activity measures as indices for momentary changes in mental effort during simulated flight. Ergonomics, 51(9), pp . 1295-1319. Ergonomics. University Medical Center Groningen, The Netherlands.
https://doi.org/10.1080/00140130802120267
Dehais, F., Causse, M., & Pastor, J. (2008). Embedded eye tracker in a real aircraft: new perspectives on pilot/aircraft interaction monitoring. Proceedings from The 3rd International Conference on Research in Air Transportation. Fairfax, USA: Federal Aviation Administration.
Dehais, F., Causse, M., & Pastor, J. (2010). Toward the definition of a pilot's physiological state vector through oculometry: a preliminary study in real flight conditions. Proceedings of HCI Aero. Toulouse, France. Centre Aéronautique et Spatial ISAESUPAERO, University of Toulouse.
Dehais, F., Tessier, C., & Chaudron, L. (2003). GHOST: experimenting conflicts countermeasures in the pilot's activity. International Joint Conference On Artificial Intelligence, 18, pp. 163-168. Toulouse cedex - France.
Di Nocera, F., Camilli, M., & Terenzi, M. (2007). A random glance at the flight deck: Pilots' scanning strategies and the real-time assessment of mental workload. Journal of Cognitive Engineering and Decision Making, 1(3), pp. 271-285. University of Rome "La Sapienza," Italy.
https://doi.org/10.1518/155534307X255627
Durso, F. T., & Alexander, A. (2010). Managing workload, performance, and situation awareness in aviation systems. Human factors in aviation, pp. 217-247. Georgia Institute of Technology and Aptima, Inc. United States.
https://doi.org/10.1016/B978-0-12-374518-7.00008-0
Dussault, C., Jouanin, J.-C., Philippe, M., & Guezennec, C.-Y. (2005). EEG and ECG changes during simulator operation reflect mental workload and vigilance. Aviation, space, and environmental medicine, 76(4), pp. 344-351. Aviation, Space, and Environmental Medicine. Institut de Médecine Aérospatiale du Service de Santé des Armées, Brétignysur- Orge Cedex, France.
Dussault, C., Lely, L., Langrume, C., Sauvet, F., & Jouanin, J.-C. (2009). Heart Rate and Autonomic Balance During Stand Tests Before and After Fighter Combat Missions. Aviation, space, and environmental medicine, 80(9), pp. 796-802. Aviation, Space, and Environmental Medicine. Institut de Médecine Aérospatiale du Service de Santé des Armées, Département de physiologie, Brétigny-sur-Orge Cedex, France.
https://doi.org/10.3357/ASEM.2494.2009
Elmenhorst, E.-M., Vejvoda, M., Maass, H., Wenzel, J., Plath, G., Schubert, E., & Basner, M. (2009). Pilot workload during approaches: Comparison of simulated standard and noiseabatement profiles. Aviation, space, and environmental medicine, 80(4), pp. 364-370. Aviation, Space, and Environmental Medicine. Institute of Aerospace Medicine. Germany.
https://doi.org/10.3357/ASEM.2382.2009
Garshnek, V., Logan, J., & Hassell, L. (1997). The telemedicine frontier: going the extra mile. Space Policy, 13(1), pp. 37- 46. Space Policy. ElSevier. Great Britain.
https://doi.org/10.1016/S0265-9646(96)00036-7
Handley, K. P. (2001). Perturbation of carotid sinus transmural pressure during push pull tilting maneouvres. University of Toronto. National Library of Canada.
Heinze, C., Trutschel, U., Schnupp, T., Sommer, D., Schenka, A., Krajewski, J., & Golz, M. (2010). Operator fatigue estimation using heart rate measures. World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, pp. 930-933. Munich, Germany.
https://doi.org/10.1007/978-3-642-03882-2_248
Hesselink, H., Zon, G., Tempelman, F., Beetstra, J., Vollebregt, A., & Hannessen, D. (2001). On-Board decision support through the integration of advanced information processing and human factors techniques: The POWER project. National Aerospace Laboratory NLR, Tech. Rep. National Aerospace Laboratory NLR. Netherlands.
Holewijn, M., Van de Endt, M., Rijkelijkhuizen, J., & Los, M. (1998). Feedback of Anti-G Straining Performance of Pilots: The Use of the Late Ear Pulse Waveform as a Feedback Signal for Blood Pressure. Tech. rep., DTIC Document. Aeromedisch Instituut, Soesterberg, The Netherlands.
Horn, J. F., Bridges, D. O., & Lee, D. (2006). Flight control design for alleviation of pilot workload during helicopter shipboard operations. Annual Forum Proceedings- American Helicopter Society, 62, p. 2032. Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA USA.
Huttunen, K., Keränen, H., Väyrynen, E., Pääkkönen, R., & Leino, T. (2011). Effect of cognitive load on speech prosody in aviation: Evidence from military simulator flights. Applied ergonomics, 42(2), pp. 348-357. Applied Ergonomics ElSevier, Finland.
https://doi.org/10.1016/j.apergo.2010.08.005
Karavidas, M. K., Lehrer, P. M., Lu, S.-E., Vaschillo, E., Vaschillo, B., & Cheng, A. (2010). The effects of workload on respiratory variables in simulated flight: a preliminary study. Biological Psychology, 84(1), pp. 157-160. Biological Psychology ElSevier, United States.
https://doi.org/10.1016/j.biopsycho.2009.12.009
Kasarskis, P., Stehwien, J., Hickox, J., Aretz, A., & Wickens, C. (2001). Comparison of expert and novice scan behaviors during VFR flight. Proceedings of the 11th International Symposium on Aviation Psychology. United States Air Force Academy Chris Wickens, University of Illinois.
Kottas, K. (1997). USAF pilot perceptions of workload assessment in a combat or high-threat environment. Tech. rep., DTIC Document. Faculty of the Graduate School of Logistics and Acquisition Management of the Air Force Institute of Technology, Air University, Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Logistics Management. United States.
Lamond, N., Dawson, D., & Roach, G. D. (2005). Fatigue assessment in the field: validation of a hand-held electronic psychomotor vigilance task. Aviation, space, and environmental medicine, 76(5), pp. 486-489. Aviation, Space, and Environmental Medicine. Australia.
Lee, Y.-H., & Liu, B.-S. (2003). Inflight workload assessment: Comparison of subjective and physiological measurements. Aviation, space, and environmental medicine, 74(10), pp. 1078-1084. Aviation, Space, and Environmental Medicine. China.
Lehrer, P., Karavidas, M., Lu, S.-E., Vaschillo, E., Vaschillo, B., &
Cheng, A. (2010). Cardiac data increase association between selfreport and both expert ratings of task load and task performance in flight simulator tasks: An exploratory study. International Journal of Psychophysiology, 76(2), pp. 80-87. International Journal of Psychophysiology, ElSevier, United States.
https://doi.org/10.1016/j.ijpsycho.2010.02.006
Liu, B.-S., & Lee, Y.-H. (2006). In-vehicle workload assessment: effects of traffic situations and cellular telephone use. Journal of Safety Research, 37(1), pp. 99-105. Journal of Safety Research, ElSevier, Taiwan.
https://doi.org/10.1016/j.jsr.2005.10.021
Méndez Veloza, J. A., & Rentería Rentería, A. (2013). Diseño e implementación de un instrumento de monitoreo de señales fisiologicas y alarma para pilotos de aeronaves no presurizadas. Universidad de San Buenaventura, Facultad de Ingeniería, Programa de Ingeniería Electrónica, Bogotá - Colombia.
Miller, S. (2001). Workload Measures. National Advanced Driving Simulator. Iowa City, United States.
Mills, F. J., & Harding, R. M. (1983). Aviation medicine. Special forms of flight. IV: Manned spacecraft. British Medical Journal (Clinical research ed.), 287(6390), p.478. RAF Institute of Aviation Medicine, Farnborough, Hants. United Kingdom..
https://doi.org/10.1136/bmj.287.6390.478
MMSingh, S., & SKrishnamurti, A. C. (2007). Aerobiotelemetry from a Fighter Aircraft. Indian Journal Aerospace Medicine Special Commemorative Volume May, 18. Institute of Aviation Medicine, Bangalore - India.
Mumaw, R. J., Sarter, N. B., & Wickens, C. D. (2001). Analysis of pilots' monitoring and performance on an automated flight deck. 11th International Symposium on Aviation Psychology, Columbus, OH. The Ohio State University. 2001. United States.
Murdin, D. L., Golding, J., & Bronstein, A. (2011). Manejo de la cinetosis. BMJ, 343, d7430. Intramed, Argentina.
https://doi.org/10.1136/bmj.d7430
Pastor, J., & Dehais, F. (n.d.). Influence of age and reward on piloting performance: a neuroergonomics contribution to aeronautic safety, p 14. Doctoral School: Aéronautique Astronautique, Toulouse, France.
Preconceito, C. S., & Prático, A. (n.d.). O Uso de Estimulantes em Combate. ASPJ Em Português 1° Trimestre 2009, pessoal de combate aéreo dos EUA.
Pubiano, J., & Aguilar, N. (2002). Sistema telemétrico de monitoreo cardiaco y variables hombre-maquina aplicado al ciclismo. Facultad de Ingeniería, Escuela de Ingeniería Electrónica, Universidad Central, VI Congreso de la Sociedad Cubana de bioingeniería, pp. 2-5. Facultad de Ingeniería, Escuela de Ingeniería Electrónica, Universidad Central, Bogotá - Colombia.
Reason, J. (1990). Human error. Cambridge University Press, United Kingdom.
https://doi.org/10.1017/CBO9781139062367
Roach, G. D., Sargent, C., Darwent, D., & Dawson, D. (2012). Duty periods with early start times restrict the amount of sleep obtained by short-haul airline pilots. Accident Analysis & Prevention, 45, pp. 22-26. Centre for Sleep Research, University of South Australia, PO Box 2471, South Australia, Australia.
https://doi.org/10.1016/j.aap.2011.09.020
Roma, P. G., Mallis, M. M., Hursh, S. R., Mead, A. M., & Nesthus, T. E. (2010). Flight Attendant Fatigue Recommendation 2: Flight Attendant Work/Rest Patterns, Alertness, and Performance Assessment. Tech. rep., DTIC Document. Office of Aerospace Medicine, Washington, DC United States.
https://doi.org/10.1037/e586812011-001
Russo, M. B., Schmorrow, D. D., Thomas, M. L., & Nunneley, S. A. (2007). Operational Applications of Cognitive Performance Enhancement Technologies. Aviation, Space, and Environmental Medicine, United States.
Sacristán, F. R. (2001). Mantenimiento total de la producción (TPM): proceso de implantación y desarrollo. Fundación Confemetal, Madrid - España.
Saleem, J. J., & Kleiner, B. M. (2005). The effects of nighttime and deteriorating visual conditions on pilot performance, workload, and situation awareness in general aviation for both VFR and IFR approaches. International Journal of Applied Aviation Studies, 5(1), pp.107-120. International Journal of Applied Aviation Studies, FAAAcademy Oklahoma City, Oklahoma USA.
Schulze, A. E., & Barineau, D. W. (1992). Advanced sensors technology survey. GE Government Services, Inc. Houston, Texas USA.
Sciarini, L. W. (2009). Noninvasive physiological measures and workload transitions: an investigation of thresholds using multiple synchronized sensors. Ph.D. dissertation. Florida: University of Central Florida Orlando.
Sirevaag, E. J., Kramer, A. F., Reisweber, C. D., Strayer, D. L., & Grenell, J. F. (1993). Assessment of pilot performance and mental workload in rotary wing aircraft. Ergonomics, 36(9), pp. 1121-1140. Aviation Research Laboratory, Institute of Aviation, University of Illinois, Boeing Helicopters, Philafelphia USA.
https://doi.org/10.1080/00140139308967983
Sterman, M., Schummer, G., Dushenko, T., & Smith, J. (1988). Electroencephalographic correlates of pilot performance: Simulation and in-flight studies. Tech. rep., DTIC Document. Sepulveda Veterans Administration Medical Center, Nsuropsychology Research, Sepulveda, California U.S.A.
Stupakov, G., Khomenko, M., & Moscow, A. (1995). Increase of high-sustained+ Gz tolerance at the expense of pilot's working posture change. AGARD, Current Concepts on GProtection Research and Development 12 p(SEE N 95-34050 12-54). North Atlantic Treaty Organization, Neuilly Sur Seine, France.
Torphy, D., Leverett Jr, S., & Lamb, L. (1966). Cardiac arrhythmias occurring during acceleration. Tech. rep., DTIC Document. USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, Texas.
Trimmel, M. (2008). Environmental Conditions and Psychophysiological Response of Pilots and Flight Attendants in Commercial Long-Haul Flights. The Ergonomics Open Journal, 1, p.72. Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria.
Van Orden, K. F., Jung, T.-P., & Makeig, S. (2000). Combined eye activity measures accurately estimate changes in sustained visual task performance. Biological psychology, 52(3), pp.221 240. San Diego California, Naval Health Research Center. Washington DC, Bureau of Medicine and Surgery (M2).
https://doi.org/10.1016/S0301-0511(99)00043-5
Webb, C. M., Gaydos, S. J., Estrada, A., & Milam, L. S. (2010). Toward an Operational Definition of Workload: A Workload Assessment of Aviation Maneuvers. Tech. rep., DTIC Document. United States: United States Army Aeromedical Research Laboratory Warfighter Performance and Health Division.
Wood, E. H. (1991). Prevention of the pathophysiologic effects of acceleration in humans: fundamentals and historic perspectives. Engineering in Medicine and Biology Magazine, IEEE, 10(1), pp. 26-36. Mayo Foundation and Medical School - United States, IEEE Engineering in Medical and Biology.
https://doi.org/10.1109/51.70037
Yao, Y.-J., Chang, Y.-M., Xie, X.-P., Cao, X.-S., Sun, X.-Q., & Wu, Y.-H. (2008). Heart rate and respiration responses to real traffic pattern flight. Applied psychophysiology and biofeedback, 33(4), pp. 203-209. Republic of China, Springer Science+Business Media, LLC 2008.
Número
Sección
Licencia
Declaración de cesión de los derechos de autor a la revista
Los autores ceden la Revista los derechos de explotación (reproducción, distribución, comunicación pública y transformación) para explotar y comercializar la obra, entera o en parte, en todos los formatos y modalidades de explotación presentes o futuros, en todos los idiomas, por todo el periodo de vida de la obra y por todo el mundo.
Todos los contenidos publicados en la revista científica Ciencia y Poder Aéreo están sujetos a la licencia reconocimiento 4.0 Internacional de Creative Commons, cuyo texto completo se puede consultar en http://creativecommons.org/licenses/by/4.0/
La licencia permite a cualquier usuario descargar, imprimir, extraer, archivar, distribuir y comunicar públicamente este artículo, siempre y cuando el crédito se dé a los autores de la obra: a los autores del texto y a Ciencia y Poder Aéreo, Revista Científica de la Escuela de Postgrados de la Fuerza Aérea Colombiana. Excepto cuando se indique lo contrario, el contenido en este sitio es licenciado bajo una licencia Creative Commons Atribución 4.0 internacional.
Para usos de los contenidos no previstos en estas normas de publicación es necesario contactar directamente con el director o editor de la revista a través del correo cienciaypoderaereo@epfac.edu.
La Escuela de Postgrados de la Fuerza Aérea Colombiana y esta publicación no son responsables de los conceptos emitidos en los artículos, ni de los metadatos aportados ni de las filiaciones que los autores declaren, ya que esta es responsabilidad plena de los autores.