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Abstract: The study of object motion has intrigued scholars for centuries, yet grasping the un-
derlying physics and mathematics has remained a challenge. However, recent advancements 
in computational methods and the utilization of mathematical models from the 18th century 
have enabled a profound understanding of motion and accurate approximations of real-life 
object movements. By harnessing tools such as matlab and engineering analytical methods, 
we can create applications that simulate the motion of spherical projectiles. This provides va-
luable insights into real-world object motion and the associated forces and physics. Dynamic 
analysis, encompassing both kinematics and kinetics, allows for a detailed exploration of mo-
tion dynamics. Inspired by the concept of an ‘Olympic goal,’ (Clayfield, n. d.), our developed 
application allows users to visualize the impact of aerodynamic forces on objects. It demons-
trates concepts like drag, lift, and the ‘Magnus effect,’ offering initial insights into object motion 
in fluid environments (Mody, 2015). This understanding acts as a foundation for modeling more 
intricate systems, including airplanes, rockets, and aerospace components. Notably, the appli-
cation’s graphical representations of essential modeling elements provide a significant advan-
tage. Furthermore, by emphasizing the motivations behind these phenomena, the application 
fosters curiosity and encourages users to delve deeper into these captivating events.

Keywords: Drag; kinematics; kinetics; lift; Magnus effect; mathematical modelling.

Resumen: El estudio del movimiento de los objetos ha intrigado a los académicos durante si-
glos, pero comprender la física y las matemáticas subyacentes ha sido un desafío. Los avances 
recientes en métodos computacionales y el uso de modelos matemáticos del siglo xviii permi-
tieron comprender el movimiento y aproximaciones precisas de los movimientos reales de los 
objetos. Al aprovechar herramientas como matlab y métodos analíticos de ingeniería, pode-
mos crear aplicaciones que simulen el movimiento de proyectiles esféricos. Esto brinda valio-
sos conocimientos sobre el movimiento real de los objetos y las fuerzas y la física asociadas. El 
análisis dinámico, que abarca tanto la cinemática como la cinética, permite una exploración 
detallada de la dinámica del movimiento. Inspirada en el concepto de un ‘gol olímpico’, nuestra 
aplicación desarrollada permite a los usuarios visualizar el impacto de las fuerzas aerodinámi-
cas en los objetos. Demuestra conceptos como la resistencia, la sustentación y el ‘efecto Mag-
nus’, ofreciendo ideas iniciales sobre el movimiento de los objetos en entornos fluidos. Esta 
comprensión sienta las bases para modelar sistemas más complejos, como aviones, cohetes y 
componentes aeroespaciales. Es importante destacar que las representaciones gráficas de los 
elementos esenciales de modelado de la aplicación ofrecen una ventaja significativa. Además, 
al enfatizar las motivaciones detrás de estos fenómenos, la aplicación despierta la curiosidad y 
anima a los usuarios a profundizar en estos eventos cautivadores.

Palabras clave: arrastre; cinemática; cinética; sustentación; efecto Magnus; modelización 
matemática.

Resumo: O estudo do movimento de objetos tem intrigado estudiosos há séculos, no entan-
to, compreender a física e matemática subjacentes tem sido um desafio. No entanto, os avan-
ços recentes em métodos computacionais e a utilização de modelos matemáticos do século 
xviii permitiram uma compreensão profunda do movimento e aproximações precisas dos mo-
vimentos reais dos objetos. Ao utilizar ferramentas como matlab e métodos analíticos da en-
genharia, podemos criar aplicações que simulam o movimento de projéteis esféricos. Isso 
proporciona insights valiosos sobre o movimento de objetos no mundo real e as forças e a fí-
sica associadas. A análise dinâmica, que abrange tanto a cinemática quanto a cinética, permi-
te uma exploração detalhada da dinâmica do movimento. Inspirada pelo conceito de um ‘gol 
olímpico’, nossa aplicação desenvolvida permite que os usuários visualizem o impacto das for-
ças aerodinâmicas nos objetos. Ela demonstra conceitos como arrasto, sustentação e o ‘efei-
to Magnus’, oferecendo insights iniciais sobre o movimento de objetos em ambientes fluidos. 
Essa compreensão serve como base para modelar sistemas mais complexos, incluindo aviões, 
foguetes e componentes aeroespaciais. É importante destacar que as representações gráficas 
dos elementos essenciais de modelagem da aplicação proporcionam uma vantagem significa-
tiva. Além disso, ao enfatizar as motivações por trás desses fenômenos, a aplicação desperta a 
curiosidade e incentiva os usuários a se aprofundarem nesses eventos cativantes.

Palavras-chave: Arrasto; cinemática; cinética; elevação; efeito Magnus; modelagem ma- 
temática.

Dynamic analysis of rounded 
projectiles: Software solution 
development

Análisis dinámico de 
proyectiles redondeados: 
desarrollo de soluciones  
con software

Análise dinâmica de 
projéteis arredondados: 
Desenvolvimento de  
solução de software
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This interactive software enables users to manipu-
late variables and observe the progression of forces, 
accelerations, velocities, positions, and other essen-
tial data required to model the projectile’s trajectory. 
The resulting trajectory is visualized in a three-dimen-
sional plane, providing a comprehensive and vivid un-
derstanding of the projectile’s motion, enriching the 
user’s conceptual grasp.

The primary objective of this work extends be-
yond the mere development of this tool; it aims to 
communicate the underlying computational approach 
and its implementation to the academic community. 
By doing so, we seek to not only showcase the versatili-
ty and power of matlab in solving complex mechanical 
problems, but also to offer this software as a valuable 
educational resource. We envision its application in ac-
ademic settings to facilitate a deeper understanding of 
projectile motion, offering a practical teaching-learn-
ing tool that bridges theoretical knowledge with re-
al-world application. Furthermore, this initiative opens 
the door for its adaptation and utilization in a broader 
range of mechanical problems, encouraging explora-
tion, innovation, and a hands-on approach to learning 
in the fields of physics and engineering. Through this 
dissemination, we aim to inspire further research, col-
laboration, and development of educational tools that 
leverage computational methods for enhanced under-
standing and innovation in various scientific domains.

Objectives

Main objective: To construct a sophisticated yet us-
er-friendly software that accurately simulates the tra-
jectory of a spherical projectile. The core aim is to 
utilize vector mechanics to create a computational 
model that not only reflects real-life movements but 
also demonstrates the application of fundamental 
physical laws in a way that resonates with real-world 
observations.

Secondary objectives:
•	 demonstrate the applicability of the computa-

tional model by simulating a real-life scenario, 

Introduction

Projectiles have played a significant role throughout 
human history, serving purposes ranging from hunting 
and defense to space exploration. The study of projec-
tile motion is crucial in achieving these objectives, with 
its analysis dating back several centuries. Beginning 
with Aristotle in the classical period of Greece during 
the 4th century, the study of motion evolved into more 
practical methodologies, notably exemplified by Isaac 
Newton in the 17th century (Dixit et al., 2017). This 
branch of study, known as dynamics, encompasses 
two main areas: kinematics, which focuses on move-
ment without considering forces, and kinetics, which 
investigates the forces responsible for object motion. 
Understanding these phenomena has been of great in-
terest, particularly due to the inherent challenges in 
modeling such systems. Complex interactions with flu-
ids, such as lift and drag forces, significantly influence 
an object’s motion through the air, enabling the use of 
airplanes to overcome gravity.

Gaining a comprehensive understanding of how 
objects respond to these forces allows us to deci-
pher their motion. Beginning with the modeling of a 
sphere or rounded projectile, which may appear sim-
ple at first glance but progressively becomes more 
challenging as we consider variables and equations 
that change over time, we encounter additional ele-
ments that influence their behavior. For instance, rota-
tional effects, such as the ‘Magnus effect,’ explain why 
rotating objects in fluids alter their direction due to a 
force orthogonal to both the object’s velocity and ro-
tation vectors (Kray et al., 2013). Parameters like the 
Reynolds number indicate the level of fluid turbulence 
(Blevins, 1985), while the drag and lift coefficients 
vary over time based on changes in velocity. Given the 
complex nature of these forces, which are also instru-
mental in understanding accelerations, we employ 
computational tools such as matlab.

Utilizing matlab’s app designing tool, matlab App 
Designer, we can develop a user-friendly and intuitive 
software that predicts the movement of rounded pro-
jectiles using computational and numerical methods. 
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Physical and Mathematical Modeling

Part i – Space 

Before delving into further detail, it is essential to es-
tablish a frame of reference. In physics, the choice of 
reference frame is arbitrary and largely dependent on 
the observer’s perspective; there is no singular ‘ideal’ 
frame of reference. For our purposes, we have selected 
a reference system that provides the most clarity and 
relevance for interpreting our specific problem, we will 
be using the following:

•	 z will be used for height
•	 y will be used for depth
•	 x will be used for length

In our soccer field, this can be visualized as given 
in Figure 1.

Figure 1. Illustration of soccer field with system of reference
Source: Own elaboration.

Part ii – Dynamics Approach

Firstly, to describe the dynamics of a spherical projec-
tile, we used the Newton’s Dynamics Principle (Meriam 
& Kraige, 2012), which stablishes that all the forces ac-
ting in the object (projectile) of mass m are proportio-
nal to its acceleration a. This is: 

		               ∑F = ma� (1)

For convenience, bold notation is used for vec-
tors and tensors in the present work. For a spherical 
projectile, if the external disturbances caused by its 

integrating authentic values and measurements 
derived from actual events.

•	 To design an intuitive interface within the soft-
ware that enables users to effortlessly explore 
and manipulate key variables influencing pro-
jectile motion, such as forces, accelerations, and 
velocities, thereby fostering a deeper under-
standing of the dynamics at play.

•	 To communicate the computational approach to 
the academic community, such that it can be ex-
ploited in other mechanic problems and teach-
ing-learning opportunities.

Methodology

We will formulate first the model in its most illustrative 
expression, later on we will continue with the devel-
opment of the mathematical modeling, finally our ap-
plication or solution will be held by the explanation of 
how the code works, and with this we will give a final 
answer to our problem, which — as said before — it is 
based on the understanding of how motion works on 
projectiles with a software solution approach.

Understanding the Problem

Grasping the principles of mathematics and physics in 
practice is notably challenging. This challenge inten-
sifies when we attempt to map these theoretical con-
cepts into real-world scenarios. A key issue we face is 
the translation of these theories into applications that 
are intuitive and relatable. In our context, the move-
ment of spherical projectiles offers a prime example 
of this problem. We will examine the ‘Olympic Goal’ in 
soccer to highlight the complexities involved. This sce-
nario encapsulates the pivotal characteristics of pro-
jectile motion, demonstrating the intricate interplay of 
forces that govern the flight of a rounded projectile. The 
problem lies in distilling these multifaceted principles 
into a format that is easily understood and visualized, 
providing a clear model that mirrors the real behav-
ior of round projectiles in a comprehensible manner.

z

x

y
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movement) and hence, it varies for each axis with the 
respective velocity (Sarafian, 2015). Also, the drag co-
efficient is given by the following non-linear approxi-
mated function (Figure 2) of the Reynolds number ℜ, 
which is defined as follows: 

		               ℜ =
  vl

		                               v�
(7)

where: 
V :	 Magnitude of the projectile’s velocity [ m  ]
L : 	 Characteristic length of the object (in this case, 

the diameter) [m]
v : 	 Kinematic viscosity of the fluid [ m 2 ]

Fit Plot

Va
rN

am
e2

VarName1

0.64

0.62

0.6

0.58

0.56

0.54

0.52

0.5

0.48

0.46
0           0.5            1            1.5            2           2.5            3            3.5           4            4.5

    •      VarName2 vs. VarName1
 —   untitled fit 1

Figure 2. Non-linear approximation of the drag coefficient for a sphere  
in terms of the Reynolds Number1. The resulting approximation is:  
CD = 0.5195 * sin (2.718e - 6ℜ + 0.1875) + 0.2265 * sin
Source: Own elaboration.

Meanwhile, the Magnus force on each axis de-
pends on the lift coefficient, the angular velocity ω and 
the velocity of the projectile v. Its direction is given by 
ω × v (Robinson y Robinson, 2013), so that for each axis 
the magnitude is defined as: 

          FMx = CLx A ρvy
2

, FMy = CLy  A 
ρvz

2

, FMz = CLz  A ρvx
2

 [N]� (8)
	               

2		           2	                            2

1  This was taken from Cengel & Cimbala (2010) and numerically interpo-
lated with https://apps.automeris.io/wpd/.

movement through a fluid are considered, then the fol-
lowing forces act on the sphere: its weight W, the buoy-
ant force FB, the Magnus force FM (being a sort of lift) 
and the drag force FD. Hence:

                           FD + FM + FB + W = ma� (2)

Furthermore, to properly describe how these 
forces act on the sphere, we must compute the mag-
nitude of each force. For this reason, a Cartesian refer-
ence system is used as follows: 

Table 1. 
General description of the dynamic equations

On x-axis
		        FDx + FMx = max� (3)

On y-axis
		        FDy + FMy = may� (4)

On z-axis
	               FDz + FMz + FB + W = may� (5)

Once our dynamic equations have been defined, 
we identify the parameters and variables of the prob-
lem. In this case, the mass of the projectile is known, as 
well as the forces at each instant of the flight. Our only 
unknown is the acceleration, which describes the cine-
matics of the projectile (Cook, 2007). The magnitude of 
the drag force is defined for each -axis as follows:

                                              ρVi
2�

                          FDi = −CD A    2    [N]� (6)

where:
CD: 	 Drag coefficient 
 A : 	 Cross-sectional area [m2]
 ρ :	 Density of the fluid [ kg  ]
Vi  : 	 Magnitude of the projectile’s relative velocity to 

the fluid in the -axis [ m  ] 

Here, the drag force is negative as it opposes to 
the velocity of the object (contrary to the direction of 

 
m3

 
s

 
s

 
s2

https://apps.automeris.io/wpd/
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impact. If the buoyancy is positive, then it’s the oppo-
site: the biggest force is the buoyant. So, if its neutral, 
that means that the buoyant force is in equilibrium with 
other forces along its axis of action. And the weight if 
the projectile is W = mg. Variables such as air density, 
kinematic viscosity and gravity change with altitude, 
yet the change is very subtle, and it is considerable 
once we have high altitudes such as 1000 m and above.

Rewriting out the forces, we have the complete 
dynamic equations from where we can solve for each 
component of the acceleration. This is: 

                             a = ax i + ay j + az k� (11)

                        ax =  Aρ (−CD vx
2 + CLxvy

2)�  (12)
                                           

2m

                        ay =  Aρ (−CD vy
2 + CLyvz

2)� (13)
                                 

2m

           az =  Aρ (−CD vz
2 + CLzvx

2) +  g (ρV − m)�  (14)                          2m                                                    m

With i, j, k being the unit vectors of the Cartesian 
reference system. 

Part iii – Kinematics 

Now, as the lift coefficient vary through time (depend-
ing on the velocity), the use of numerical methods is 
necessary to integrate the previous equation for each 
time instant of the flight. Several possibilities can be 
adopted here, such as the family of high-order Runge- 
Kuta schemes. For simplicity and clearness of our nu-
merical formulation, we use the Euler’s method to 
integrate the numerical solution for velocities and po-
sitions of the projectile at each time instant. A thor-
ough analysis of the numerical accuracy and stability 
is presented at the results section to clarify the numer-
ical integrator choice. 

We know that if an object moves with a varying 
acceleration, then its velocity and position will greatly 
change. The acceleration is integrated in time, obtain-
ing the velocity of the object defined as: 

Here, the lift coefficient, similarly to the drag co-
efficient, is also given by a non-linear approximated 
function (Figure 3), but in this case it depends on a ro-
tation ratio defined for each axis as:

     Ratiox =  
ωkL

 , Ratioy =  
ωyL

 , Ratioz =  
ωxL

� (9)
                                 

2vy                                2vx                                2vz

 
Fit Plot
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Figure 3. Non-linear approximation of the lift coefficient for a sphere in terms 
of the rotation ratio2. For example, the CLx  is CLx= 0.2944 + (-0.1077 * cos(Ratiox 
* w1)) + (-0.03208 * sin (Ratiox * w1)) + ... 
Source: Own elaboration.

The buoyant force is defined by the Archimedes 
Principle as follows:

                                         FB = ρgV� (10)

where:
ρ:	 Density of the fluid [ kg  ] 
g:	 Gravitational acceleration  [ m  ]
V : 	Displaced (submerged) volume of the object [m3] 

It is important to mention that the buoyant force 
can be either a negative, positive, or neutral buoyan-
cy. Specifically, it’s negative if its effect is negligible 
and other forces like the weight have a far-reaching 

2  This was taken from Cengel & Cimbala (2010) and numerically interpo-
lated with https://apps.automeris.io/wpd/.
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2. 	 Defining forces: The forces acting on the projec-
tile are defined as functions to be used during the 
Euler’s method loop. This includes gravitation-
al force, drag force (which depends on the veloc-
ity and drag coefficient), and Magnus force (which 
depends on the rotation velocity of the projectile).

3. 	 Euler’s method loop:
	– Forces calculation: Forces are computed as 

functions of the actual velocities.
	– Acceleration calculation: Forces are divided 

by mass to obtain acceleration.
	– Velocity update: The current acceleration is 

added to the current velocity, multiplied by 
the time step, to obtain the new velocity.

	– Position update: The current velocity is add-
ed to the current position, multiplied by the 
time step, to obtain the new position.

	– Terminal velocity check: If the projectile 
reaches terminal velocity, it sets the velocity 
to the terminal velocity.

	– Stop condition: The loop checks whether the 
projectile has hit the ground, signaling that 
the simulation should stop.

4. 	 Storage of parameters: Throughout the simu-
lation, various parameters such as drag force, lift 
coefficients, and Reynolds number are stored at 
each time step.

5. 	 Termination: The simulation ends when the stop 
condition is met.

We used matlab App Designer to build up an in-
terface where we could change the projectiles and 
fluids parameters and where we could analyze the po-
sition, velocities, and accelerations of the projectile. 
But also, the software interface is designed to report 
the nondimensional coefficients and calculated forces 
along the projectile flight.

Simulation and results

It’s important to mention that the Eulers method was 
used to compute the accelerations, as it provides a 

                          v(t + ∆t) = v(t) + a(t)∆t� (15)

v(t + ∆t) = vx(t + ∆t)i + vy(t + ∆t)j + vz (t + ∆t)k� (16)

where: 
t: Time instant [s]
∆t: Time increment [s]
v(t): Projectile velocity at (t) [ m  ]
v(t + ∆t): Projectile velocity at (t + ∆t) [ m  ]
If the acceleration is integrated twice, we obtain 

the position of the object defined as: 

               r(t + ∆t) =  12 a(t)∆t2 + v(t)∆t + r(t)� (17)
   
     r(t + ∆t) = x(t + ∆t)i + y(t + ∆t)j + z(t + ∆t)k� (18)

where: 
r(t): Projectile position at (t) [m]
r(t + ∆t):Projectile position at (t + ∆t) [m]

It is important to mention that both the final po-
sition and the complete flight time are known parame-
ters of the problem. Finally, using equations 11-18 we 
can simulate the complete kinematics of the spherical 
projectile.

Coding process

We developed our main code by using all our variables 
and equations, and we integrated them by using the 
Euler method, which is a way to solve such problems 
involving differential equations. The use of this meth-
od is applied through a loop that resembles that of an 
iteration step by step, choosing our minimum value 
of time that is related to the computational power we 
have available. The coded algorithm follows the steps 
to be explained next:

1. 	 Initialization: The code first sets up the neces-
sary physical constants, such as gravity, drag, 
and Magnus coefficients. It also initializes arrays 
to store the projectile’s positions, velocities, and 
accelerations.

 
s

 
s
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Reports are also available for the trajectory visu-
alization in two-dimensional planes, together with cal-
culated forces and drag and lift coefficients through 
the projectile’s flight. This has been designed to report 
that most of the accelerations dynamically depend 
on the calculated forces. This is observed in a sepa-
rated graph: forces and accelerations actually change 
not being completely linear nor completely parabolic, 
showing how in real life we approximate these com-
plex results as a parabola. Our position, velocities and 
accelerations results are shown in Figure 6.

As we can see, there are components that change 
over time, and by clicking on the interface graph, the 
exact value is deployed (red for positions, green for 
velocities and blue for accelerations). The drag forces 
(which are the forces of air resistance due to the fric-
tion and pressure of air), the Magnus force, and/or the 
gravity are depicted. On the z-axis or vertical axis, the 
acceleration tends to be the common gravity acceler-
ation measurement when the ball is in its maximum 
height, where the velocities are small and only the 
gravity is considerable at all (in such axis at least). 

We consider that the distance between the center 
of the Earth and the ball is considerable enough to even 
see a change of 1% of the gravity value. Yet if we want 
to consider such changes, we can make a difference 

minimum error by calculating the values with an iter-
ating differential, we developed an ui (user interface) 
that allows the user to easily use all the important vari-
ables that could get measured with utensils in real life. 
In this regard, we use several sources of data for real 
life measurements of a flying soccer ball and its prop-
erties, between them we can find that we have:

•	 Velocities: less than 211 km/h or less than  
58.6 m/s. (Clayfield, n. d.).

•	 Mass of a ball: 450g aprox. (Thefa, n. d.).
•	 Diameter of a ball: 22 cm or 0.22 m (rss).
•	 Air density (at 273 kelvin and 101.325 kPa):  

1.293 kg/m3 (Earth Data Open Access for Open 
Science, n. d.).

•	 Air kinematic viscosity: 1.48 × 10-5 m2 ⁄s (Cadence 
cfd Solutions, n. d.)

•	 Gravity acceleration: 9.803 m/s2 (Meyers, 2001).

The following screen (Figure 4) shows the initial 
conditions used for the software interface. 

Under those conditions, we run the simulation 
and obtain a trajectory that is visualizable in three di-
mensions, a trajectory that is constructed by using the 
Euler’s method point by point, and resolves into an ac-
tual parabola like trajectory, as seen in Figure 5.

Figure 4. User interface: Initial conditions and parameters
Source: Own elaboration.

Figure 5. Trajectory result of the simulation
Source: Own elaboration.
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Figure 6. Developed trajectory and forces in each direction
Source: Own elaboration.

between our local gravity, air density and air viscosity, 
and the ones considered through formulas. Remem-
ber that such considerations are not only negligible by 
chance, but also because it requires more computing 
processing power, which is one of the reasons we use 
numerical methods that do not resemble less than 1 
millisecond (to generate more precision), yet the one 
we used is enough to particular problems and more re-
fined methods would actually show a similar behavior 
(such as Runge-Kutta of 4th order).

We can see the development of the Magnus force, 
the drag coefficient and lift coefficient, and other prop-
erties in Figure 7. We can observe that the buoyant 
force (which is considered if the ball would be weight-
ed in a vacuum) is constant and really minimal, show-
ing how little of an impact it actually has in a projectile 
(unless it is submerged in a denser liquid like water).

The Reynolds number and the lift and drag coeffi-
cients are depicted in Figure 8. On the drag coefficient, 
we can stablish that we reach a plateau, where no no-
ticeable variation is seen, this is due to the surface of the 
sphere (which is considered as a smooth ball). This is also 
the cause of the Figure 7 drag force constant behavior.

The Reynolds number result validates our model, 
since most of literature refer to the drag coefficient of a 
ball a number around 0.4, which is what we observed 

Figure 7. Developed forces in each direction
Source: Own elaboration.

in our simulation. Also notice that the lift coefficient 
changes over time, which also explains how the air re-
sistance has an impact on how the projectile moves 
with the Magnus effect, and as we can see, the lift force 
actually decreases (because it is imparting less nega-
tive acceleration), and thus we see that the accelera-
tion on the x-axis actually decreases. Remember that 
also the ratio between the velocity of rotation in rad/s 
and the velocity of an axis affect how the forces are de-
veloped, consider we also just have rotation in an axis 
that allows force on the x-axis, but the user can add dif-
ferent rotation directions. 

Figure 8. Developed non-dimensional coefficients
Source: Own elaboration.
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Euler’s method, being a first-order technique, 
should exhibit linear convergence. This is substan-
tiated by the log-log plots where the relationship be-
tween the log of the time step size and the log of the 
error approximates a straight line with a slope of -1 
for the position and -1 for the velocity. This slope in-
dicates that the Euler method’s error is directly pro-
portional to the time step size, confirming its linear 
order of convergence. Such linear convergence is typ-
ical for Euler’s method and serves as a validation of its 
implementation.

The plots do not show any indication of numer-
ical instability within the computed time scales. Nu-
merical instability typically manifests as divergent 
solutions when the time step size is too large, which 
is not observed here. The absence of instability within 
these human-scale computational times indicates that 
the chosen time step sizes are within the method’s sta-
bility limits. This is a positive indication of the robust-
ness of Euler’s method for the simulated scenarios.

A further investigation is performed over the time 
step used in the Euler method. This is important in or-
der to validate the use of the present software. In that 
regard, results for several time steps (0.0001, 0.001, 
0.01, 0.1, 0.5, 1) is used to create comparative graphs 
that show the sensitivity of the simulation results to 
different time step sizes. These graphs shown in Fig-
ure 9 are important in numerical methods, like Euler’s 
method, because they can show how a smaller time 
step can lead to more accurate results, although at the 
cost of increased computation time.

In the provided log-log plots of the Euler meth-
od’s results, we observe a consistent trend towards 
stabilization of solutions with decreasing time step siz-
es. This indicates convergence of the method, which is 
a desired attribute in numerical simulations. The plots 
reveal a distinct proportional relationship between the 
logarithm of the time step size and the logarithm of the 
solution’s differences, suggesting a power-law behav-
ior characteristic of convergent processes.

Figure 9. Convergence analysis of the Euler’s method against the time step size. Log-log scales in all variables
Source: Own elaboration.
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•	 Other numerical integration methods, such as 
the Runge-Kutta of 4th order, may be a future line 
of research, improving the accuracy of the veloc-
ity and position of the projectile in our software. 
The conducted sensitivity analysis underscores 
the reliability of Euler’s method for the range of 
time steps considered. However, for applications 
demanding higher precision or those involving 
more complex dynamics, the implementation of 
higher-order methods such as Runge-Kutta could 
be beneficial. The choice of the numerical meth-
od must balance the computational cost with the 
required accuracy, and our analysis provides a 
solid foundation for making an informed decision 
in this regard.
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