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Artificial Intelligence in  
the Aviation Operations:  
A State of the Art 

Abstract: In recent years, the use of artificial intelligence (ai) has grown significantly, largely 
driven by the expansion of Industry 4.0 and the increasing generation of data across various 
sectors. The aviation industry has been no exception to this technological advancement, with 
numerous studies exploring ai applications in this field. This study aims to provide a compre-
hensive and up-to-date analysis of ai usage in air operations, with a particular focus on flight 
planning, trajectory prediction, and resource optimization. Through this analysis, we seek to 
delve into the latest advancements and methodologies employed in the industry, identifying 
key algorithms and techniques used. Additionally, the study offers an integrated view of ai ap-
plications in aviation, highlighting its potential to enhance operational efficiency, safety, and 
decision-making. Finally, we aim to identify the most promising areas for research and devel-
opment to support ongoing innovation in this ever-evolving field.

Keywords: Aviation; artificial intelligence; machine learning; trajectories.

Resumen: En los últimos años, el uso de la inteligencia artificial (ia) ha crecido significativa-
mente, impulsado en gran medida por la expansión de la Industria 4.0 y la creciente generación 
de datos en diversos sectores. La industria aeronáutica no ha sido la excepción en este avance 
tecnológico, y numerosos estudios han explorado las aplicaciones de la ia en este campo. Este 
estudio tiene como objetivo ofrecer un análisis exhaustivo y actualizado sobre el uso de la ia en 
las operaciones aéreas, con un enfoque particular en la planificación de vuelos, la predicción 
de trayectorias y la optimización de recursos. A través de este análisis, buscamos profundizar 
en los últimos avances y metodologías empleadas en el sector, identificando los principales al-
goritmos y técnicas utilizados. Además, el estudio proporciona una visión integral de las apli-
caciones de la ia en la aviación, destacando su potencial para mejorar la eficiencia operativa, 
la seguridad y la toma de decisiones. Finalmente, esperamos identificar las áreas de investiga-
ción y desarrollo más prometedoras para contribuir al progreso e innovación en este campo en 
constante evolución.

Palabras clave: aviación; inteligencia artificial; machine learning; trayectorias.

Resumo: Nos últimos anos, o uso da inteligência artificial (ia) cresceu significativamente, im-
pulsionado em grande parte pela expansão da Indústria 4.0 e pela crescente geração de dados 
em diversos setores. A indústria aeronáutica não foi exceção a esse avanço tecnológico, e inú-
meros estudos exploraram as aplicações da ia nesse campo. Este estudo tem como objetivo 
oferecer uma análise abrangente e atualizada sobre o uso da ia nas operações aéreas, com um 
foco especial no planejamento de voos, na previsão de trajetórias e na otimização de recursos. 
Através desta análise, buscamos aprofundar nos avanços mais recentes e nas metodologias 
utilizadas no setor, identificando os principais algoritmos e técnicas empregados. Além disso, 
o estudo oferece uma visão integrada das aplicações de ia na aviação, destacando seu poten-
cial para melhorar a eficiência operacional, a segurança e a tomada de decisões. Finalmente, 
esperamos identificar as áreas de pesquisa e desenvolvimento mais promissoras para contri-
buir com o progresso e a inovação neste campo em constante evolução.

Palavras-chave: Aviação; inteligência artificial; aprendizado de máquina; trajetórias

Inteligencia artificial en  
las operaciones aéreas:  
un estado del arte

Inteligência artificial nas 
operações de aviação:  
Um estado da arte
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companies employ software developed by Airspace In-
telligence, FlightAware, among others.

Artificial intelligence is often evaluated in rela-
tion to human intelligence through various tests, and 
its definition can shift based on perspective, framed 
either in terms of mental processes or observable be-
haviors. In the book Artificial Intelligence: A Modern 
Approach (Russell & Norving, 2009), is described from 
four distinct perspectives, as illustrated in Table 1. These 
perspectives are split between the goals of thinking or 
acting like humans and those of thinking or acting ra-
tionally. The former aims to replicate human cognition 
and behavior, while the latter focuses on logic and op-
timization without mirroring humans. This latter ap-
proach is frequently more suitable for practical tasks 
requiring efficiency and precision.

Table 1. 
Some definitions of artificial intelligence

Systems that 
think like humans

“The new and exciting endeavor for making 
computers think... machines with minds, in the 
broadest sense of the word.” (Haugeland, 1985)

“[The automation of] activities that we associate 
with human thought processes, activities such 
as decision-making, problem-solving, learning...” 
(Bellman, 1978) 

Systems that 
think rationally

“The art of developing machines with the 
capability to perform functions that, when 
performed by humans, require intelligence.” 
(Kurzweil, 1990)

“The study of how to make computers perform 
tasks that, at the moment, humans do better.” 
(Rich & Knight, 1991) 

Systems that act 
like humans

“The study of mental faculties by the use  
of computational models. (Charniak & 
McDermott, 1985)

“The study of the computations that male  
it possible to perceive, reason, and act.”  
(Winston, 1992)

Systems that act 
rationally

“Computational Intelligence is the study of 
designing intelligent agents.” (Poole et al., 1998)

“AI... is concerned with intelligent behavior in 
artifacts.” (Nilsson, 1998)

Source: Russell & Norving (2009).

Artificial intelligence has been developed since 
the 1940s by Donald Hebb, and its growth and appli-
cation have been evident since the 1990s. Researchers 

Introduction 

Air transportation is currently experiencing significant 
growth, resulting in increased fuel consumption, envi-
ronmental pollution, service times, maintenance, con-
sumables, and crew requirements, leading to higher 
operational costs (Calvo-Fernández, 2017; Gössling & 
Humpe, 2020). Furthermore, this continuous growth 
has necessitated the improvement of air traffic con-
trol systems to prevent delays and enhance safety (Me-
deiros et al., 2012).

Proposed solutions include the application of 
Area Navigation (rnav) techniques, a navigation meth-
od that allows aircraft to operate on any desired flight 
route within the coverage of navigation aids or with-
in the limits of autonomous aids, or a combination of 
both. This method has been enhanced with the intro-
duction of Required Navigation Performance (rnp), 
which focuses on onboard aircraft performance moni-
toring and alerting (Medeiros et al., 2012). These meth-
odologies have enabled the operation of more aircraft 
in the same airspace and improved safety, although 
they are not specifically focused on optimization, 
which is of interest to operators.

An efficient flight plan is one of the most critical 
factors in air operations, as it ensures safe operations, 
boosts crew confidence, and significantly saves fuel. 
However, fuel calculation is not a linear process and 
depends on various factors, making it challenging to 
predict accurately (Spencer, 2011).

Air operators employ software to plan flights, tak-
ing into account various operational aspects. However, 
the outcomes of this planning are not always optimal 
due to unexpected airspace congestion or meteorolog-
ical conditions, as dispatchers rely on updated publi-
cations from the aviation authority.

The current surge in data generation enables the 
utilization of algorithms that transform this data into 
valuable information. Research efforts have allowed 
airlines to leverage artificial intelligence systems to de-
velop machine learning algorithms that collect and an-
alyze data for predicting delays, weather conditions, 
performance, flight plans, and fuel consumption. Some  
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neural networks. Each technique serves a specific pur-
pose and has unique applications in data analysis and 
organization (Taherdoost, 2023).

Machine learning 

Supervised learning Unsupervised learning

Classification Regression Clustering Dimension 
reduction

Logic  
regression

Classification 
trees

Support vector 
machines

Random  
forest

Artificial neural 
networks

Linear 
regression

Decision trees

Bayesian 
netwoks

Fuzzy 
classification

Artificial neural 
networks

K-means 
clustering

Hierarchical 
clustering

Gaussian 
mixture models

Genetic 
algorithms

Artificial neural 
networks 

Principal 
component 

analysis

Tensor 
descomposition

Multidimensional 
statitics

Ransom  
projection

Artificial neural 
networks

Figure 1. Machine learning algorithms
Source: Louridas & Ebert (2016).

Supervised learning allows a machine learning 
model to learn the mapping from an input x to an out-
put y, using a training dataset consisting of input-output 
pairs (Murphy, 2013). In other words, supervised learn-
ing is used when the training set comprises the data 
and the authentic output of the process that uses this 
data (Vandehzad, 2020).

Classification Algorithms

Classification algorithms are used when the response 
is based on a finite set of outcomes, i.e., a discrete label.

Regression Algorithms 

Regression algorithms estimate and understand re-
lationships between variables. These analyses focus 
on an independent variable and a series of other vari-
ables that vary, making them useful for prediction and 
forecasting.

have focused their interest on the development of 
more general intelligences, resulting in subfields of ar-
tificial intelligence such as speech and image recog-
nition, neural networks, robotics, machine learning, 
among others (McCorduck & Cfe, 2004). Currently, ar-
tificial intelligence has taken on an important role due 
to the high volume of data generated in different in-
dustries. Algorithms are becoming more sophisticated, 
faster, and capable of handling increasingly extensive 
and heterogeneous databases (Robert, 2014). Further-
more, with the improvement in computational power, 
the era of big data has emerged. This era is character-
ized by the 3 V’s: volume, velocity, and variety. A large 
volume of data is stored, which comes in a wide variety 
of formats (numbers, images, texts, and others), and 
it is analyzed at a high speed (Bleu-Laine, 2021). The 
tools used for big data analysis are machine learning 
and deep learning.

Machine learning consists of a set of methods 
used to automatically find patterns in data (Murphy, 
2013). The patterns that are found can be used to make 
predictions on unseen data and forecast future be-
havior. These forecasts can help identify subsequent 
actions without fully understanding the data behav-
ior (Bzdok et al., 2018). Thus, machine learning has 
proven to be an effective tool in applications such as 
decision-making, fraud detection, cancer diagnosis, rec-
ommendation systems, voice assistants, among others 
(Bleu-Laine, 2021).

The existing algorithms are displayed in Figure 1,  
illustrating two primary learning strategies: super-
vised and unsupervised. This figure outlines the struc-
ture of machine learning divided into these two major 
approaches. In supervised learning, we see classifica-
tion and regression techniques. Classification includes 
methods such as decision trees, support vector ma-
chines, and artificial neural networks, while regression 
utilizes approaches like linear regression, Bayesian 
networks, and neural networks, among others. On 
the other hand, unsupervised learning encompass-
es clustering and dimensionality reduction. Cluster-
ing employs algorithms like K-means and hierarchical 
clustering, while dimensionality reduction includes 
techniques such as principal component analysis and 
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Dimensionality reduction

Dimensionality reduction algorithms aim to reduce 
the number of variables considered to extract the re-
quired information. Table 3 presents unsupervised 
learning algorithms categorized into clustering and di-
mensionality reduction tasks. In clustering, algorithms 
like K-means, dbscan, hierarchical clustering, Gauss-
ian mixture models, and hidden Markov models are 
used to group unlabeled data. For dimensionality re-
duction, key techniques include principal component 
analysis (pca), tensor decomposition, multidimension-
al statistics, and random projection, all of which sim-
plify data representation by reducing complexity while 
preserving essential information.

Table 3. 
Unsupervised algorithms

Task Algorithm

Clustering K-means
dbscan
Hierarchical clustering
Gaussian Mixture Models
Hidden Markov Models

Dimensionality Reduction Principal Component Analysis
Tensor Decomposition
Multidimensional Statistics
Random Projection
Source: Authors.

Source: Own elaboration.

The purpose of this review is to search and ana-
lyze the available information in databases related to 
artificial intelligence used in air operations, focusing 
on flight planning processes, trajectory prediction, and 
resource optimization.

Methodology 

Conducting a systematic review requires establishing 
a work methodology that clarifies and simplifies the 
search for research and the synthesis process. For this 
reason, three phases are proposed: planning, execu-
tion, and reporting.

Table 2 presents supervised learning algorithms 
for classification and regression tasks. In classifica-
tion, key algorithms include logistic regression, deci-
sion trees, svm, knn, Naive Bayes, random forests, and 
boosting, all useful for categorizing data. For regres-
sion, the list includes linear regression, regression trees, 
and svr, which are focused on predicting continuous  
values.

Table 2. 
Supervised algorithms

Task Algorithm

Classification Logistic Regression
Decision Trees
Support Vector Machine (svm)
k-Nearest Neighbor (knn)
Naive Bayes
Random Forest
Boosting

Regression Regresión linear
Arboles de regresión
Support Vector Regressor

Source: Own elaboration.

The objective of unsupervised learning is to dis-
cover knowledge from a dataset (Murphy, 2013). In this 
case, the data is unlabeled, and machine learning al-
gorithms rely on the structure of the input x to create 
clusters of similar data points, determine the data dis-
tribution within the input space, or reduce higher-di-
mensional data to 2 or 3 dimensions for visualization 
purposes (Bishop, 2006). In other words, unsupervised 
learning is used when the training set consists of data 
but lacks solutions, requiring the computer to solve 
the problem on its own (Vandehzad, 2020). In practice, 
these algorithms are widely used as they do not re-
quire labeled datasets, resulting in more available data 
(Bleu-Laine, 2021).

Clustering Algorithms 

Involves grouping together similar data points and 
separating dissimilar data points. The measure of sim-
ilarity between data points and the representation of a 
cluster are key differences among various clustering al-
gorithms (Arts, 2021).
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Figure 2. Document types without refinement
Source: Own elaboration.

Applying the exclusion criteria, the number of 
results was reduced to 162 published articles. Figure 
3 displays the distribution of publications by year, re-
vealing that artificial intelligence has had a significant 
impact on research since 2018.

Planning

The planning phase involves defining the research 
problem, formulating the search equation based on 
keywords, and establishing exclusion criteria. For this 
research, the selected search equation is:

(title-abs-key ( artificial and intelligence or ma-
chine and learning ) and title-abs-key ( aircraft ) and 
title-abs-key ( trajectory or prediction or delay or 
flight or fuel ) )

The Scopus database was chosen as the data-
base, and the exclusion criteria included all documents 
that were not research articles.

Execution 

The execution process involves applying the search 
equation across selected databases. Once the informa-
tion is gathered, various filters are applied, and exclu-
sion criteria are implemented. The exclusion criteria 
are as follows: the sources must be scientific articles, 
and they must specifically address topics related to air 
operations.

Reporting

The reporting phase involves presenting the most rele-
vant information gathered and its impact. This includes 
an analysis of the types of documents found, the year 
of publication, and the interaction among studies, with 
the goal of examining the research objectives, algo-
rithms used, and databases referenced.

Discussions

Analysis of Publication Trends and  
Keyword Relationships in Machine  
Learning for Aviation 

By conducting the search in Scopus, a total of 423 re-
sults were found, as shown in Figure 2. It can be obser-
ved that the majority of publications are conference 
papers, followed by articles.

Figure 3. Publications by year
Source: Own elaboration.

Using the collected information, a relationship 
map was constructed using the vosViewer© program. 
Figure 4 illustrates the co-occurrence of keywords and 
the selected search equation. The figure is a relation-
ship map in the field of machine learning as applied to 
aviation and related systems. The nodes and connec-
tions represent interconnected concepts such as neu-
ral networks, learning systems, aircraft, and detection 
technologies. Certain groups of terms are highlight-
ed by color to indicate related topics: red emphasiz-
es areas like deep learning and aircraft detection; 
blue is linked to aircraft engineering and structural 

Documents by year
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Based on this map, it can be observed that the 
majority of research revolves around trajectory predic-
tion algorithms and air traffic management, as shown 
in Figure 5. This indicates a strong focus on these areas 
within the field of aviation operations.

monitoring; and green clusters focus on learning sys-
tems and air transport. This map illustrates how various 
areas of machine learning interact within the aviation 
context, from fault prediction and detection to aircraft 
control and training.

Figure 4. Co-occurrence of keywords 
Source: Own elaboration.

Figure 5. Co-occurrence in air operations
Source: Own elaboration.
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it has a significant impact on trajectory prediction 
(Choi et al., 25-29 September 2016).

Performance-Based Models 

Various research has been conducted on trajectory 
prediction based on models such as Point-Mass, ki-
nematic, kinetic, and others (Musialek et al., 2010). 
State estimation models establish the motion equa-
tion based on aircraft velocity, position, acceleration, 
and other attributes. While this model is relatively sim-
ple, it can lead to errors due to uncertainty caused by 
the inability to accurately capture aircraft maneuvers. 
Therefore, it is effective only for short periods of time 
(Zeng et al., 2022). Kinetic models analyze aircraft forc-
es based on ideal assumptions, often with limited con-
sideration of real constraints and human behavior 
(Lymperopoulos et al., 21-24 August 2006; Porretta et 
al., 2008; Schuster et al., 2012; Schuster & Porretta, 3-7 
October 2010). These kinetic models require aircraft 
performance data, aircraft state, environmental condi-
tions, aircraft intentions, and other parameters, some 
of which are commercially sensitive and difficult to ob-
tain. They also rely on pre-defined configurations or 
estimations in existing databases. The uncertainty as-
sociated with these input data induces uncertainty in 
trajectory prediction. For this reason, sesar research 
aims to improve this situation (Zeng et al., 2022).

The state estimation models used include Kal-
man Filter (kf), Particle Filter algorithm, and Hidden 
Markov Model (hmm) as a single-model estimation. 
For multi-model estimation, multi-model kf, Inter-
acting Multiple Model (imm), and improved imm have 
been used (Zeng et al., 2022). Additionally, some arti-
ficial intelligence algorithms have been employed for 
fuel estimation (Trani et al., 20-22 September 2004), 
thrust prediction (Dalkiran & Toraman, 2021), wind ef-
fects-based speed estimation (Porretta et al., 2008), 
aircraft conflict detection using the Residual-Based 
Interacting Multiple Model (rmimm) (Hwang et al., 11-
14 August 2003), and recent research has developed 
models for trajectory and performance prediction 
(Hrastovec & Solina, 2016; Tang et al., 2015).

Artificial Intelligence in Aircraft Operations

Air traffic management systems focused on trajecto-
ry-based operations (tbo) were proposed in the United 
States and Europe, named Next Generation Air Trans-
portation System (NextGen) (Federal Aviation Admin-
istration [faa], 2015) and Single European Sky atm 
Research (sesar, 2021), respectively. Nowadays, there 
are different technologies and equipment that allow 
accurate aircraft position acquisition and reporting. 
Integration between Automatic Dependent Surveil-
lance-Broadcast (ads-b) and atm enhances flight effi-
ciency and safety (Besada et al., 2000; Jeon et al., 2015; 
Yong et al., 22-27 May 2012). Machine learning plays a 
crucial role in trajectory exploitation and character-
ization, with clustering, neural networks, and genetic 
algorithms being commonly employed for trajectory 
planning and optimization (De Oliveira, 2019).

Most current trajectory prediction research falls 
under the category of “trajectory-based” methods, 
which rely on grid-based navigation aid planning. Re-
garding algorithm structure and parameters, ground-
based 4-D trajectory prediction can be primarily 
divided into aircraft performance-based models and 
trajectory-based models (Shi, 2020).

Trajectory prediction is an attractive but com-
plex research area as it requires interaction between 
aircraft operational models, flight planning, and envi-
ronmental conditions (Courchelle et al., 2019; Cheung, 
2018; Roskam, 1998; Takeichi, 2018). Furthermore, the 
increasing availability of data has facilitated more re-
search in atm systems. This increase is attributed to 
detection equipment, ground stations, satellites, and 
other facilities that provide an ample amount of data 
for air traffic management systems. An important re-
source in this context is the Base of Aircraft Data (bada), 
which provides theoretical model specifications and 
related datasets for accurately simulating the behavior 
of any aircraft (eurocontrol, 2004). Additionally, his-
torical flight trajectory data can be collected through 
ads-b ground stations, which have been used for tra-
jectory prediction (Harada et al., 7-11 January 2019). 
Although meteorological data is not easily accessible, 
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primarily relies on underlying laws of aircraft opera-
tions to excavate representative trajectory patterns, 
while the second approach is based on input-output 
space reconstruction (Lin et al., 2019). Different algo-
rithms such as regression algorithms, neural networks, 
clustering, and other models have been used. Table 4 
shows some of the algorithms employed.

Databases 

There are several databases that have been used in re-
search related to flight trajectory prediction, including 
aircraft performance data, aircraft surveillance data, 
and meteorological data.

Aircraft Performance Data 

Performance data includes operational envelopes of 
the aircraft (speeds, weights, fuel consumption, etc.), 
aerodynamics, and other parameters. Currently, these 
data can be found in the bada, Aircraft Noise and Per-
formance (anp), among others (Fukuda et al., 2010; 
Zeng et al., 2022).

Trajectory-Based Models 

Machine learning models utilize algorithms and data 
mining techniques to learn from historical flight trajec-
tories and meteorological data in order to predict fu-
ture trajectories. These models are built upon weak or 
no assumptions and do not require explicit modeling of 
aircraft performance, procedures, or airspace. Instead, 
they learn patterns from the input data. These algo-
rithms are also considered a type of data engineering, 
as their effectiveness improves with larger datasets. 
Due to the vast amount of trajectory data available, it 
is possible to extract patterns from complex trajectories 
and identify important features, providing a prelimi-
nary basis for trajectory prediction (Zeng et al., 2022).

Generally, flights follow the same planned route 
and sequence of waypoints, indicating regularity in 
historical trajectories. This makes machine learning 
highly viable (Lin et al., 2019). This methodology ex-
tracts the underlying law governing changes in air-
craft trajectories over time from a large amount of data 
and uses this law to predict position trajectories. It 
typically employs two approaches: the first approach 

Table 4. 
Overview of models used for flight prediction

Model Description Reference

Regression Model Linear regression (Hamed et al., June 2013; Hong & Lee, 2015; Kanneganti et al., 23-26 July 2018)

Stepwise regression (De Leege et al., 19-22 August 2013)

Non-linear regression (Hamed et al., June 2013; Tastambekov et al., 2014)

Neural Network Model Feedforward neural networks (Le Fablec & Alliot, May 1999; Verdonk-Gallego et al., 2018, 2019; Wu et al., 2020)

Elman neural network (Min et al., 2020)

lstm (Shi et al., 8-13 July 2018, 2021; Xu et al., 2021; Yang et al., 27-30 July 2019; Zeng 
et al., 2020; Zhao et al., 6-8 July 2019)

dnn + lstm (Zhang & Mahadevan, 2020)

cnn + lstm (Ma & Tian, 2020)

gru (Zhang et al., 2020)

Bayesian neural network (Zhang & Mahadevan, 2020)

Generative Adversarial Network (Pang & Liu, 6-10 January 2020)

Clustering Model Gaussian mixture model with clustering
Random forest with clustering
Neural networks with clustering

(Barratt et al., 2019; Tran et al., 2020; Wang et al., 2017)

Other models Non-parametric interval prediction
Genetic programming

(Hamed, 2014; C. Zhang et al., 8-10 July 2016)

Source: As shown in the table.
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•	 Heading: orientation of the aircraft with respect 
to the north (decimal degrees)

FlightRadar24 is a global aircraft flight tracking 
service that allows real-time visualization of air traffic 
flow. It combines data from multiple sources, includ-
ing ads-b, multilateration, and radar data. FlightRa-
dar24 operates worldwide (including Colombia) and 
has more than 20,000 ads-b receivers (FlightRadar24, 
2020).

There are other platforms such as FlightAware, 
OpenSky Network, ads-b Exchange, and VariFlight, 
which also receive data from the ads-b system, man-
age and visualize it. The drawback with these plat-
forms is that they do not have an extensive network of 
receivers in Colombia (ads-b Exchange, 2022; Flight-
Aware, 2020; OpenSky Network, n. d.; VariFlight, 2022).

The Flight Plan Database (https://flightplanda-
tabase.com/) has a large collection of flight plans pri-
marily intended for flight simulation. For this reason, 
most plans do not have any flight identification or time 
information. However, they can be used as a guide for 
route planning (Kiesiläinen, 2020).

Meteorological Data 

Meteorological data provides information related to 
environmental conditions, such as temperature, wind 
direction and speed, air pressure, and changes in grav-
ity and magnetic forces. The most commonly used da-
tabases include eurocontrol with European Centre 
for Medium-Range Weather Forecasts (ecmwf), North 
American Mesoscale Forecast System (nam), among 
others (Zeng et al., 2022).

The China Meteorological Data Network (cmdc, 
2022) is a collector and manager of weather files and 
information. They collect, process, store, retrieve, and 
provide meteorological data worldwide. ecmwf (2022) 
is an organization that reanalyzes weather data, pro-
vides weather forecasts, and develops numerical 
models and data assimilation systems. They provide 
the Copernicus atmospheric monitoring and climate 
change services of the European community.

bada is an aircraft performance model developed 
by eurocontrol in cooperation with aircraft manufac-
turers and airlines. It is based on the kinetic method 
for aircraft performance modeling, including the the-
oretical basis for calculating aircraft performance pa-
rameters and specific coefficients for calculating their 
trajectories. Currently, bada has two widely used se-
ries, Series 3, which contains data for 100% of aircraft 
operating in Europe, and Series 4, which has improved 
performance calculations and covers approximate-
ly 70% of aircraft operating in Europe (eurocontrol, 
2004).

anp is jointly developed by the United States De-
partment of Transportation, the European Control 
Center, and the European Aviation Safety Agency. This 
database provides noise and performance character-
istics for over 150 types of civil aviation aircraft and 
is used for noise calculation around airports. Aircraft 
manufacturers provide data for each type of engine, 
which is published within the framework of Regulation 
(eu)598/2014 (Tang et al., 2015; Zeng et al., 2022).

Aircraft Surveillance Data 

Monitoring data includes various aspects of current po-
sitioning and velocity and is provided in real-time. This 
data is used for trajectory monitoring, as done by the 
Automatic Dependent Surveillance-Broadcast (ads-b) 
system and secondary surveillance radar. ads-b is a 
surveillance system that uses satellite navigation to 
locate the aircraft’s position and broadcast it to other 
aircraft or ground antennas. This technique makes air-
craft visible and provides situational awareness. The 
data provided by ads-b includes (Pham, 2019):

•	 Flight id: a unique serial number representing 
each flight

•	 Time: date (month/day/year) and utc time
•	 Position: latitude (decimal degrees), longitude 

(decimal degrees), and altitude (ft)
•	 Ground speed: relative horizontal speed with res-

pect to the ground (knots)
•	 Rate of climb: change in altitude (feet per minute)
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linear regression, neural networks, and clustering sys-
tems have enhanced route and arrival time accuracy. 
In meteorology, machine learning has improved re-
al-time weather forecasting, which is crucial for flight 
safety. Fuel consumption has been optimized by mod-
els that consider factors such as altitude and speed, 
resulting in cost savings and reduced emissions. In air 
traffic management, machine learning has increased 
system capacity, helping to manage congestion more 
effectively.

In summary, machine learning applications in 
aviation operations offer valuable benefits in efficien-
cy, safety, and sustainability. The rising interest and 
research in this area reflect a strong commitment to le-
veraging artificial intelligence to advance the aviation 
industry.
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