Aprendizaje STEM basado en diseño de aeronaves: una estrategia interdisciplinaria desarrollada para Clubes de Ciencia Colombia*

Pedro David Bravo-Mosquera
São Carlos Engineering School University São Paulo

Nelson David Cisneros-Insuasti
Funbotic S.A

Bryann Avendaño-Uribe
SCIENcETLab- Transformando con Ciencia

Fabiola Mosquera-Rivadeneira
Universidad Santo Tomás

RESUMEN

En este artículo se presenta una estrategia de aprendizaje STEM basada en diseño de aeronaves, con el objetivo de fomentar el desarrollo de la ciencia aeronáutica en Colombia. Esta estrategia de enseñanza fue desarrollada por instructores especializados del programa Clubes de Ciencia Colombia, buscando estimular en los jóvenes estudiantes colombianos su pasión por la ciencia, la tecnología y la innovación, y en el proceso, crear una red internacional de colaboraciones académicas. Fue utilizada la taxonomía de Bloom para clasificar y seleccionar tanto los objetivos educativos, como el plan de enseñanza para el club de ciencias. Actividades STEM que allanan a los estudiantes a realizar experiencias de aprendizaje práctico que fueron la base de esta estructura de trabajo. Esencialmente, actividades interdisciplinarias relacionadas con la aeronáutica, la electrónica, las simulaciones computacionales y el dibujo técnico, caracterizan este club de ciencias. Como resultado, los estudiantes pudieron diseñar, fabricar y probar su propio modelo aéreo lanzado a mano, aplicando todos los pasos del método científico: la concepción de ideas, el diseño y la ejecución de experimentos, y la comunicación de resultados. Después de las primeras pruebas de vuelo de los modelos aereos, los estudiantes revelaron la capacidad de aplicar sus conocimientos de matemáticas junto con su aprehensión de ciencias sobre las fuerzas de vuelo para mejorar su técnica de lanzamiento. Por lo tanto, fueron mejorados tanto el tiempo de vuelo como el alcance de los modelos aereos. Finalmente, tanto estudiantes como instructores se beneficiaron a lo largo de la interacción de aprendizaje, ya que fue la primera vez que una comunidad rural es el escenario de un proceso de capacitación en ingeniería aeronáutica. Se espera que la divulgación de este material contribuya con la comunidad aeronáutica colombiana, ofreciendo perspectivas para nuevas propuestas de investigación y marcos de cooperación entre entidades gubernamentales y universidades.

PALABRAS CLAVE:

aprendizaje STEM, diseño de aeronaves, taxonomía de Bloom, aprendizaje práctico, método científico, Clubes de Ciencia Colombia.

* Artículo de reflexión resultado del proyecto de investigación denominado “Science Club – Aircraft Design” (2018). La filial institucional corresponde a las siguientes entidades: São Carlos School of Engineering – University of São Paulo, Funbotic S.A, SCIENcETLab y Universidad Santo Tomás.
Aprendizagem STEM baseada no projeto de aeronaves: uma estratégia interdisciplinar desenvolvida para os clubes de ciências da Colômbia*

RESUMO

Neste artigo apresenta-se uma estratégia de aprendizado STEM baseada no projeto de aeronaves, a fim de incentivar o desenvolvimento da ciência aeronáutica na Colômbia. Essa estratégia de ensino foi desenvolvida por instrutores especializados do programa Clubes de Ciência Colômbia, buscando estimular os jovens colombianos sua paixão pela ciência, tecnologia e inovação e, no processo, criar uma rede internacional de colaborações acadêmicas. A taxonomia de Bloom foi usada para classificar e selecionar tanto os objetivos educacionais, quanto o plano de ensino do clube de ciências. Atividades STEM que incentivam os alunos a realizar experiências de aprendizado prático foram a base desta estrutura de trabalho. Essencialmente, atividades interdisciplinares envolvendo aeronáutica, eletrônica, simulações computacionais e design técnico; caracterizaram este clube de ciências. Como resultado, os alunos foram capazes de projetar, fabricar e testar seu próprio modelo aéreo lançado à mão, aplicando todas as etapas do método científico: concepção de ideias, o projeto e a execução de experimentos e a comunicação dos resultados. Após os primeiros testes de voo dos modelos aéreos, os alunos revelaram a capacidade de aplicar seus conhecimentos de matemática em conjunto com o aprendizado de ciências nas forças de voo, a fim de melhorar sua técnica de lançamento. Assim, foram aprimorados tanto o tempo de voo quanto o alcance dos modelos. Finalmente, alunos e instrutores foram beneficiados durante todo o interação de aprendizagem, pois foi a primeira vez que uma comunidade rural e cenário de um processo de formação em engenharia aeronáutica. Espera-se que a divulgação deste material contribua à comunidade aeronáutica colombiana, oferecendo perspectivas para novas propostas de pesquisa e estruturas de cooperação entre entidades governamentais e universidades.

CARACTERÍSTICAS DO CONTRIBUIDOR

Pedro David Bravo-Mosquera
São Carlos Engineering School University São Paulo
Bryann Avendaño-Uribe
SCIENTeLab- Transformando com Ciência
Nelson David Cisneros-Insuasti
Funbotic S.A
Fabiola Mosquera-Rivadeneira
Universidad Santo Tomás

CIENCIA Y PODER AÉREO
ISSN 1909-7050 / E-ISSN 2389-2468 / Volumen 14 (1)
Enero-Junio de 2019 / Colombia / Pp. 204-227
Doi: https://doi.org/10.18667/cienciaypoderaereo.629

PALAVRAS-CHAVE:
aprendizado STEM, projeto de aeronaves, taxonomia de Bloom, aprendizado prático, método científico, Clubes de Ciência Colômbia.
ABSTRACT

This article describes a STEM learning strategy based on aircraft design in order to promote the development of aeronautical science in Colombia. This teaching strategy was developed by specialized instructors from the Science Clubs Colombia program, seeking to stimulate in young Colombian students their passion for science, technology, and innovation, and in the process, create an international network of academic collaborations. Bloom’s taxonomy was used to classify and select both the educational objectives, as well as the teaching plan of the science club. STEM activities that encourage students to perform hands-on learning experiences were the basis of this framework. Essentially, interdisciplinary activities involving aeronautics, electronics, computational simulations, and technical drawing; characterized this science club. As a result, the students were able to design, manufacture and test their own hand-launched air-model, applying all steps of the scientific method: the conception of ideas, design, execution of experiments, and communication of results. After the first flight tests of the air-models, the students disclosed an ability to apply their mathematical knowledge in conjunction with their science learning on the forces of flight, in order to improve their launching technique. Therefore, both the time and range of the air-models were enhanced. Finally, both students and instructors benefited throughout the learning interaction, since it was the first time that a rural community is the scenario of an aeronautical engineering training process. It is expected that the dissemination of this material will contribute to the Colombian aeronautical community, giving outlooks for new research proposals and cooperation frameworks between government entities and universities.

KEY WORDS:

STEM Learning, Aircraft Design, Bloom’s Taxonomy, Hands-on Learning, Scientific Method, Science Clubs Colombia.

Pedro David Bravo-Mosquera
São Carlos Engineering School University São Paulo
Bryann Avendaño-Uribe
SCIENTELab- Transformando con Ciencia
Nelson David Cisneros-Insuasti
Fundotic S.A
Fabiola Mosquera-Rivadeneira
Universidad Santo Tomás

CIENCIA Y PODER AÉREO
ISSN 1909-7050 / E-ISSN 2389-2468 / Volumen 14 (1)
Enero-Junio de 2019/ Colombia/ Pp. 204-227
DOI: https://doi.org/10.18667/cienciaypoderaereo.629

OPEN ACCESS

Los textos publicados en esta revista están sujetos –si no se indica lo contrario– a una licencia de Reconocimiento 4.0 Internacional de CreativeCommons. La licencia completa se puede consultar en https://creativecommons.org/licenses/by/4.0/deed.es_ES.

Aprobado evaluador interno: 15/08/2019
Aprobado evaluadores externos: 03/09/2019

© Revista Ciencia y Poder Aéreo 2019. Nota: Los textos y las figuras publicados en esta revista no pueden ser reproducidos o distribuidos en la totalidad o en parte, por cualesquiera medios, sin el consentimiento del titular de los derechos de autor.
INTRODUCTION

Historically, the countries most involved in the development of the aeronautical sector in Latin America have been Brazil and Colombia. The Brazilian inventor and engineer, Alberto Santos Dumont (July 20, 1873 - July 23, 1932), is recognized by the scientific community as one of the most important pioneers of aviation (Torenbeek and Wittenberg, 2009). Among his projects is highlighted the SD19 (Demoiselle) aircraft, whose 10.2 m² of wing area, 120 kg of maximum takeoff weight (MTOW) and 24 horse-power (HP), make it the precursor of modern aircraft, creating the design principles of both, light aircraft and general aviation (Abdalla and Catalano, 2013; Ibrahim and Mohnot, 2006).

On the other hand, the title of precursor and creator of the aviation in Colombia is awarded to Gonzalo Mejía (Medellín, 1884 - 1958), whose proposal to use amphibious aircraft for passenger and cargo transport missions along the Magdalena river aroused great interest in promoting the aviation in Colombia (León, 2011). Thus, in 1921, the CCNA (Compañía Colombiana de Navegación Aérea) and the SACDITA (Sociedad Colombo-Alemana de Transportes Aéreos) were founded in Medellín and Barranquilla, respectively.

After years of evolution and development due to the end of the Second World War, Brazil and Colombia began to manufacture aircraft at the end of the 60s, just after the creation of the Andean Pact. In Colombia, Aviones de Colombia S.A company quickly embarked on this project, expanding the aircraft market in Venezuela, Chile, Peru, and Bolivia. This led to the Colombian assembly system became the first in the world in its sort (Corradine, 1980). Something similar happened in Brazil, where Embraer S.A company besides manufacturing Piper aircraft, also designed their aircraft, which began to be certified due to bilateral agreements with the United States (Dínero, 2000). It should be noted that the importance of such efforts qualified to Embraer as one of the most important companies in the aeronautical sector (3rd biggest aircraft manufacturer in the world) (Forjaz, 2005).

Although both countries began their aeronautical industries at the same time, there are several crucial aspects that finally marked the current situation of the Colombian aviation. For example, Brazil greatly enhanced its air power, not only because of the size of its aeronautical infrastructure, but also because of its ability to generate technology, research, and, above all, employment (Bernardes, 2000). Furthermore, the stability of policies and the scientific projects developed between Brazilian Universities and Embraer led to this company to success, i.e., Brazil managed to synchronize economically several political and scientific aspects with Embraer (Catalano, 2008; Catalano and Carmona, 2013; Suzigan and Da Motta, 2011).

Based on the remarkable characteristics described above, perhaps the most important difference between Brazil and Colombia is the structuring of policies that the aeronautical authority of each country have established. Therefore, according to this literature review, the most viable way to improve the aircraft development in Colombia is the agreement of the efforts of the State, the academic community and private entities, to combine the political, scientific and economic aspects, respectively (Guzmán, 2006).

It is worth mentioning that during the last years, the aeronautical sector in Colombia has undergone essential changes. The creation of CIAC S.A (Corporación de la Industria Aeronáutica de Colombia) is one of the great achievements of the Colombian government. Outstanding projects are being developed in this unit, standing out the Calima T-90, the Urubú S-17 glider, and Unmanned Aerial Vehicles (UAVs), such as the UAV Quimbaya and UAV Coelum, which encourage the design and manufacture of aircraft in Colombia, expanding the aerospace industry due to the participation of military and civil companies (Aeronaves no tripuladas, 2019; Aeronaves tripuladas, 2019; UAV Coelum, 2019).
activities, which aims to eliminate the classic teaching practice, and demonstrate that students learn best when learning is active, i.e., when they are engaged in hands-on classroom activities, and involved in what they are learning. It should be noted that Bloom’s taxonomy was used to structure curriculum learning objectives, assessments, and activities. Thus, the proposed STEM learning strategy involved both free computational tools that provide an interdisciplinary work environment and also simple and inexpensive materials for aircraft manufacturing.

Besides offering an experience closer to professional activity, this teaching-learning process provides an adequate understanding of the involved subjects. The authors implemented the proposed method during the Science Clubs Colombia (Clubes de Ciencia Colombia) week and the positive results inspired to keep it on the curriculum.

After this introduction section concerning the history and the current design trends of the aeronautical sector in Colombia, section “Background” presents the state-of-the-art of current learning strategies and its application to aerospace engineering problems. Section “Application of STEM Learning Strategy” provides the methodologies used to develop the STEM learning strategy and the hands-on activities. Section “Science club – Aircraft design” presents the application of the STEM learning strategy and the contents of the activities developed in each day of the science club. Section “Results” describe the main results obtained during the execution of the science club – aircraft design. Finally, the section “Conclusions” sums up the main contributions of the article.

BACKGROUND

Usually, understanding how airplanes fly is the childhood desire of most of the aeronautical community. We use that initial motivation to develop a learning strategy based on STEM education for young learners, introducing real-problem design practices, and considering that students have not engineering experience.

STEM education has been evolving from a set of overlapping disciplines to a more joined and interdisciplinary approach (Bybee, 2010a). This new learning methodology includes the teaching of academic concepts through real-world applications and combines formal and informal learning in schools, the community, and the workplace (Bybee, 2010b). In this way, STEM learning seeks to impart scientific thinking and problem solving, along with soft skills such as cooperation and adaptability (Drew, 2011). For this reason, basic STEM concepts are best learned at an early age (in elementary and secondary school) because they are the essential prerequisites to career technical training, to advanced college-level and graduate studies (Trilling and Fadel, 2009; Conley, 1997).

Teaching aerodynamics is an excellent pedagogical opportunity to awaken the reminiscent knowledge that is on the natural curiosity of children. Example of this approach can be seen in many aeronautical and mechanical engineering schools, where teachers motivate students in activities that develop curiosity and creativity such as airplane-building competition (Catalano et al., 2012). In fact, there are some frameworks that were the basis for the development and execution of class educational strategies. For example, Catalano et al. (2012) reported an educational strategy for better prepare newly graduated engineers for the global era. In this article, the authors developed an innovative approach to current engineering education that utilizes traditional design-centric methodologies, adding new disciplinary experiences to supplement traditional engineering education. The positive feedback received from the industry, in general, demonstrates that the proposed method enhances the design capabilities of the engineers that acquired this course. Agrico de Paula et al. (2013; 2016a; 2016b; 2016) reported several study cases about interdisciplinary experiences in aeronautical engineering education. The authors described the interdisciplinary activities as integration processes that engage educators and learners in joint work, i.e. the interaction of school curriculum subjects with each other and with real-world problems, overcoming the fragmentation of traditional teaching. For that reason, particular modifications in the curriculum of the aeronautical engineering program of the Instituto Tecnológico de Aeronáutica (ITA) were adjusted. For example, before 2014, the subjects of metrology and technical drawing were assimilated in a traditional teaching way, i.e. without the correlation of both courses and a practical view about the relevance of these courses for future engineers. However, after 2014, the Physics department at ITA developed a new teaching-learning process, connecting several interdisciplinary knowledge through a practical view. As a result, students of the early courses of aeronautical engineering assembled air-models successfully, given the great interest of students in aeronautical design. A similar conclusion was presented by Passador et al. (2017), however, as this method has already been applied over the last years at ITA, currently, the project has the direct involvement of teachers of the aforementioned subjects, laboratory technicians and monitors.

Another example concerning going hands-on in STEM issues involved active learning for mechatronics labs (Ramirez-Cadena et al., 2008). In this article, the authors integrated industrial technologies, hands-on activities, and laboratory equipment to improve communication between teachers and students by developing robots for different applications. As a result, students noticed how to deal with situations that may arise by multidisciplinary working teams to face problems in industrial environments. On the other hand, Alba and Orrego (2013) intended to identify methodological strategies to inspire graduate students to use virtual tools in their professional preparation. After testing many strategies, the authors concluded that educational experiences based on learning by doing practices are the key to the achievement of the proper use of technological tools. Finally, English and King (2015) reported a STEM learning strategy for fourth-grade students’ investigations in aerospace. In this article, the authors developed a basic pedagogical strategy involving the design of paper-air-models that were constructed, tested and redesigned. The main conclusion from this study was that well-structured engineering experiences provide opportunities for students to engage in the design process of an aerospace problem.
Based on the previous description about educational strategies in an engineering context, it is possible to infer that STEM education at the pre-college levels is obtaining increased international significance. It is evident that the traditional teaching process in engineering has changed. For this reason, the new educational methods based on STEM learning and teaching by doing (hands-on), provide a cohesive learning paradigm based on real-world applications. Thus, the key to this STEM learning strategy was to involve several interdisciplinary knowledge through a practical view.

Fundamentals of aircraft design, assessing the principles of aeronautics and electronics were the primary basis of this science club. Likewise, computational simulations and technical drawing tools were integrated into an interdisciplinary approach to consolidate the knowledge learned during the theoretical foundation. This allowed students to get involved in a purely practical environment, in which students' engagement with each of the framework's design processes revealed problem-scoping components in their initial designs and flight tests. As instructors, we are sure that the dissemination of this material can serve to enrich the educational environment in four specific disciplines: science, technology, engineering, and mathematics. Figure 1 shows the outline of the STEM learning strategy of the proposed exercises. Note that students manufactured and tested an air-model using the knowledge from the theoretical foundation, hands-on practices and the interdisciplinary nature of educational strategies. This STEM method applies Active Learning (AL) techniques such as collaborative learning and self-learning. In addition, it uses technological resources to enrich and make more efficient the learning process. AL techniques are developed based on the strategies of Bloom's Taxonomy, selected subjects, cognitive domain, educational strategies, instructional techniques, and classroom tasks is shown in Table 1. This educational strategy is divided into four major modules (see Figure 2) which were developed based on the strategies for effective training and education. As STEM learning comprises activities that involve skills in analysis and synthesis: all learning is hands-on (Christensen, Knezek, and Tyler-Wood, 2015). Therefore, through Bloom's taxonomy, a STEM learning strategy was developed to successfully complete these objectives. In conclusion, Bloom's taxonomy provides students with preparatory learning for the future, which is the primary goal of education. The teaching plan along the 6 days of activities, including our version of Bloom's Taxonomy, selected subjects, cognitive domain, educational strategies, instructional techniques, and classroom tasks is shown in Table 1. This educational strategy is divided into four major modules (see Figure 2) which were developed based on the strategies for effective training and education.

APPLICATION OF STEM LEARNING STRATEGY

Bloom's taxonomy was implemented in order to develop and select the optimal teaching plan of the science club. It includes the recognition of specific facts such as procedural patterns and concepts that serve in the development of intellectual abilities and skills (Ferraz and Belhot, 2010). Currently, teaching has been focused on the lowest levels of education, i.e., those that do not care to reach a significant level of learning, such as listening, memorizing and understanding. However, as move up the hierarchical levels of Bloom's taxonomy, we find goals that are much more meaningful for student learning, such as analyzing, evaluating, and creating. Many of these implicit objectives are related to cognitive aspects of high abstraction, such as STEM classes, where students must learn to think critically as they use science, technology, engineering, and mathematics to solve real-world problems (Drew, 2011).

According to Bybee (2010b), the verbs taken from STEM lesson strategies hint at the possibilities:

- Science - Evolve, recycle, verify, interpret, recognize.
- Technology - Create, build, design, plan.
- Engineering - Construct, simulate, assemble, invent, experiment.
- Mathematics - Solve, investigate, prioritize, justify, analyze.

As STEM learning comprises activities that involve skills in analysis and synthesis: all learning is hands-on (Christensen, Knezek, and Tyler-Wood, 2015). Therefore, through Bloom's taxonomy, a STEM learning strategy was developed to successfully complete these objectives. In conclusion, Bloom's taxonomy provides students with preparatory learning for the future, which is the primary goal of education. The teaching plan along the 6 days of activities, including our version of Bloom's Taxonomy, selected subjects, cognitive domain, educational strategies, instructional techniques, and classroom tasks is shown in Table 1. This educational strategy is divided into four major modules (see Figure 2) which were developed based on the strategies for effective training and education.

This STEM method applies Active Learning (AL) techniques such as collaborative learning and self-learning. In addition, it uses technological resources to enrich and make more efficient the learning process. AL techniques are widely used in laboratory classes as they enable students to learn by doing (hands-on). In this context, the students are actively working with laboratory equipment and interacting with their classmates. The main idea is that students develop, besides knowledge, abilities such as self-learning, critical thinking, creativity, teamwork, effective communication skills, leadership, among others (Ramírez-Cadena et al., 2008).

Figure 1. The interdisciplinary framework developed for the science club - aircraft design.
TABLE 1.
Teaching plan of the science club – aircraft design.

<table>
<thead>
<tr>
<th>DAY</th>
<th>OBJECTIVES</th>
<th>SUBJECT</th>
<th>COGNITIVE DOMAIN</th>
<th>EDUCATIONAL STRATEGY</th>
<th>INSTRUCTIONAL TECHNIQUES</th>
<th>CLASSROOM TASKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interpret</td>
<td>Components and acting forces on an aircraft</td>
<td>Analyzing</td>
<td>Exploratory</td>
<td>Photos and videos</td>
<td>Without task</td>
</tr>
<tr>
<td></td>
<td>Experiment</td>
<td>Bernoulli’s principle and Newton’s third law</td>
<td>Applying</td>
<td>Support and training</td>
<td>Physics laboratory</td>
<td>Individual task</td>
</tr>
<tr>
<td>2</td>
<td>Recognize</td>
<td>Aircraft performance</td>
<td>Understanding</td>
<td>Exploratory</td>
<td>Photos and videos</td>
<td>Without task</td>
</tr>
<tr>
<td></td>
<td>Create</td>
<td>Paper airplanes</td>
<td>Applying</td>
<td>Exploratory</td>
<td>Folding instructions</td>
<td>Individual task</td>
</tr>
<tr>
<td>3</td>
<td>Simulate</td>
<td>Aircraft aerodynamics using XFLR5 (free software)</td>
<td>Applying</td>
<td>Support and training</td>
<td>Computing laboratory</td>
<td>Laboratory tests</td>
</tr>
<tr>
<td></td>
<td>Design</td>
<td>Air-model three-view design</td>
<td>Applying</td>
<td>Support and training</td>
<td>Technical drawing</td>
<td>Teamwork</td>
</tr>
<tr>
<td></td>
<td>Interpret</td>
<td>Basic electronic concepts</td>
<td>Understanding</td>
<td>Exploratory</td>
<td>Photos and videos</td>
<td>Without task</td>
</tr>
<tr>
<td></td>
<td>Interpret</td>
<td>Basic navigation light system</td>
<td>Synthesis</td>
<td>Exploratory</td>
<td>Photos and videos</td>
<td>Discussion</td>
</tr>
<tr>
<td></td>
<td>Assemble</td>
<td>Electronic circuit on a breadboard</td>
<td>Applying</td>
<td>Support and training</td>
<td>Electronics laboratory</td>
<td>Teamwork</td>
</tr>
<tr>
<td></td>
<td>Construct</td>
<td>Hot wire cutter for polystyrene</td>
<td>Applying</td>
<td>Support and training</td>
<td>Electronics laboratory</td>
<td>Teamwork</td>
</tr>
<tr>
<td></td>
<td>Construct</td>
<td>Air-model</td>
<td>Applying</td>
<td>Support and training</td>
<td>Physics laboratory</td>
<td>Teamwork</td>
</tr>
<tr>
<td></td>
<td>Assemble</td>
<td>Navigation light circuit on an air-model</td>
<td>Applying</td>
<td>Support and training</td>
<td>Electronics laboratory</td>
<td>Teamwork</td>
</tr>
<tr>
<td></td>
<td>Verify</td>
<td>Entire assembly of the air-model</td>
<td>Synthesis</td>
<td>Exploratory</td>
<td>Folding instructions</td>
<td>Teamwork</td>
</tr>
<tr>
<td>5</td>
<td>Plan</td>
<td>Flight test</td>
<td>Assessing</td>
<td>Support and training</td>
<td>Folding instructions</td>
<td>Teamwork</td>
</tr>
<tr>
<td></td>
<td>Analyze</td>
<td>Flight time of the air-model</td>
<td>Assessing</td>
<td>Support and training</td>
<td>Folding instructions</td>
<td>Discussion</td>
</tr>
<tr>
<td></td>
<td>Draft</td>
<td>Poster of the science fair</td>
<td>Applying</td>
<td>Support and training</td>
<td>Folding instructions</td>
<td>Teamwork</td>
</tr>
<tr>
<td>6</td>
<td>Exhibit</td>
<td>Main results and experience</td>
<td>Synthesis</td>
<td>Dialogic</td>
<td>Slides</td>
<td>Presentation</td>
</tr>
</tbody>
</table>

Thus, all classroom sessions were designed to let students take control of the equipment, performing activities such as observation, judgment, improvements, and implement real-world projects. As indicated in Fig. 2, we consider the application of STEM knowledge during the design process of the air-models. This framework served as a reference point for developing the classroom activities, enabling the identification and analysis of the students’ developments, particularly concerning their group and class discussions.

PROBLEM DEFINITION.

- Provide specific introductory training.
- Explain and reaffirm the goal.
- Identify design restrictions.
- Consider design feasibility.
- Perform experiments.
- Establish teamwork.

CONCEPTION OF IDEAS.

- Provide experiences and advanced training.
- Share experiences.
- Discuss strategies.
- Develop a plan.

DESIGN AND MANUFACTURE.

- Air-model development (hands-on activities).
- Sketch the initial design.
- Perform simulations.
- Interpret flight characteristics.
- Transform design to air-model.

DESIGN EVALUATION.

- Meeting design restrictions.
- Test air-model.
- Check design restrictions.
- Verify flight quality.
- Final flight test.

Figure 2. Science club – aircraft design, STEM learning strategy.

Problem definition

During the problem definition, rapid and well-structured classroom sessions were provided by the instructors in order to introduce students to the aeronautical field. As the main goal of the science club – aircraft design, was to design, manufacture and flight test of an air-model, the understanding of aerodynamic concepts such as angle of attack, boundary layer, Reynolds number, stall behavior, tip-vortices and its relation with aerodynamic design, provided students with the necessary knowledge to the execution of their activities. It is worth noting that all activities followed the scientific method framework in order to provide students the ability to solve problems, perform experiments, and present results.

Once identified the main objective of the entire course, students recognized the design restrictions/requirements that were given by the instructors. These restrictions included: time of execution, air-model dimensions, quantity and quality of materials, manufacture tools, etc. Thus, students explored, evaluated, and discussed the design constraints. The generation of design ideas that must match design constraints involved students in real engineering situations, allowing them to identify and recognize problems to figure out solutions. Finally, before starting with the air-model design and execution, several individuals and group activities were performed to carry out experiments of the most important subjects presented.

Those activities allowed to identify, among others, how to promote cooperation between team members, and who will assume the leadership of the team.

Conception of ideas

The main objective of the conception of ideas was to enable students to share and formulate thoughts about the possible strategies for designing the air-models. The active participation of the team members was an essential element to develop an in-depth understanding of solution processes and key features. For this reason, as instructors, sharing our own experiences of real problems, challenged students to perform interesting concepts.
Design and manufacture

This process required the development of skills to analyze problems, propose solutions, and prepare a collaborative plan to face real and complex situations. Several hands-on activities to stimulate problem-solving during the design of the air-models, such as computational simulations and technical sketches, were developed. Thus, the aerodynamic theory provided by the instructors offered freedom to select airfoils, select tail configuration, and design wings. In this way, students interpreted the flight characteristics of their air-models. Through their initial draft, students created new designs to win the building/flying competition elaborated by the instructors. During this first flight attempt, the students recorded the flight characteristics of their air-models and compete with the designs of their classmates. The ideas, developed theoretical STEM knowledge, and transformed their sketches into 3D models.

Design evaluation

As noted in Figure 2, the last stage of this STEM learning strategy intended to achieve the design constraints of the air-model development. During this stage, students applied their STEM knowledge to perform flight tests of their air-models and compete with the designs of their classmates. The students discussed in their groups how and why they could modify both their launch strategy and their designs to win the building/flying competition elaborated by the instructors. The first flight attempt; the students recorded the flying time, the path in flight, and how the air-models landed. Thus, during the second flight attempt, the students applied their learning about flight forces to improve the flight quality of their air-models. Most students were able to suggest ways to improve their first flight attempt. Their proposed improvements featured a range of changes involving altering the gravity force on the plane, adding flaps at the back of the wings, increasing the plane's speed, and others. To conclude, final discussions summarized the entire science club, and surveys were performed to know students’ opinion about the course.

SCIENCE CLUB – AIRCRAFT DESIGN

Science Clubs Colombia (Clubes de Ciencia Colombia) is a Latin American STEM education initiative whose mission is to expand scientific education to youth and children in Colombia. The initiative was born in 2015 with some Ph.D. and Master Students from Boston, Massachusetts at Harvard University and Massachusetts Institute of Technology MIT who participated in Science Clubs Mexico, and they wanted to expand this idea to Colombia (Mcb, 2016). Science Clubs is a one-week camp conducted by Colombian scientists who are studying or working abroad and want to bring inspiration for young people in Colombia. This idea arose to bring science to rural areas in Colombia, expanding scientific education from cities to rural zones, aiming to inspire the next generation of scientists in the region.

The idea behind bringing the scientists to involve them in a scientific revolution: make science and technology a priority for people. That is why youth and children are relevant for this idea. More than 5 years, 6000+ children and young people impacted, more than 600 scientists (national and international) and 2500 alliances with national and international institutions are just some numbers inside the initiative (Avendaño-Uribe, 2018).

As instructors, we had the objective of preparing the students for expository and laboratory classes. The design process of the air-models was split into five phases (five days), so that each of which is supported by a theoretical explanation in terms of aeronautical and pedagogical approaches:

Day 1 – Introduction to aeronautics

The science club – aircraft design started by recognizing the primary meaning of the scientific method. After this explanation including some examples of aerodynamics, students had the possibility to ask and answer scientific questions by making their own inquiry, and considering the six steps of the scientific method, which are: ask a question, perform a state-of-the-art of similar researches, construct a hypothesis, perform simulations and experience, analyze the data obtained, and finally report the results obtained (Cohen, 2013). Some interesting examples created by the students were: How a wind turbine converts wind energy to electrical energy? Which is the function of the wings on an aircraft? These questions allowed to conclude that students understood the particular concept. In fact, students successfully completed the six steps of the scientific method throughout the science club week, since they acquired knowledge about aeronautics, to develop and show up their own air-models.

Once explained the scientific method, the introductory course of aeronautics took place, starting with a brief discussion about the history of aviation. This subject was crucial because the students learned some specific terms of the aeronautical nomenclature, such as the definition and classification of aircraft. The presentations included photos and videos about the evolution of the aeronautics. Along the lecture of the history of aviation, students interpreted and knew the layouts of the aerodynamic concepts from the pioneer era, until the current aerospace age (Crouch, 2004). The main conclusion of this session was to clarify that despite the growing problems faced by aviation, future aircraft will offer unique capabilities in terms of speed and payload. Therefore, as long as people have transportation requirements, aviation will always be necessary.

The second subject of this introductory day was the description of the components and acting forces on an aircraft. The explanation of this discipline was perhaps the most challenging part of the science club, due to the vast aeronautical nomenclature involved. However, the use of an interactive idea was aided on the interpretation of the involved concepts, by making a relation between the parts of the aircraft and their function on the acting flight forces. In sum, the students interpreted the flight of an aircraft in a straight-and-level unaccelerated condition. Figure 3 shows a schematic of the acting forces on an aircraft.

The interpretation of these forces regarding their function and controllability was essential to the progress of the air-models developed by the students. For example, explaining the lift force, some concepts such as the angle of attack, wing surface, relative velocity, lift coefficient, among others, were the basis for understanding that the aircraft wing must generate enough lift to overcome the aircraft weight. The description of the lift force cannot be well understood without the explanation of the drag force. Therefore, some concepts such as wetted area, parasitic drag, induced drag, aspect ratio, among others, expanded the information previously provided. Finally, basic concepts about the propulsion system and its relation to the thrust force were provided (Anderson, 2000). The above basic aerodynamic theory gives to the student’s knowledge of how to design airfoils, wings, empennage, and fuselage; providing also support to develop analytical thinking. Finally, to conclude the first day of activities, some experiments of the Bernoulli’s principle and Newton’s third law were carried out to understand how the aircraft forces are generated.

Figure 3. Acting forces on an aircraft. Available from: https://sites.google.com/site/mrjimismypsciencesite/myp2/physics-2/08-force-diagrams
Day 2 – Computational model and technical drawing

The second day started with a brief lecture about aircraft performance and dynamic activity to create paper airplanes. A single A4 sheet of paper was used for this purpose. The aim of this step was to reinforce the knowledge learned the previous day. Subsequently, hands-on activities by performing computational modeling were conducted using the XFLR5 free software (Deperoós, 2010). This tool allows simulating the aerodynamic characteristics of several airfoils and 3D configurations using the vortex lattice method. Therefore, students generated and simulated a 3D perspective of their air-models to study the flow patterns around their models. Some aerodynamic characteristics that students could appreciate through this program were: pressure contours, streamlines, lift distribution, wingtip vortices, and among others.

Activities started by performing two-dimensional simulations of several airfoils used in aero-modeling activities. Then, as students already knew the main flight principles, they selected the best airfoil in terms of aerodynamic efficiency to be used in their wing designs.

The simulation of the aerodynamic environment was essential to learn how to consider direct (aerodynamics) and indirect (weight, loads, structural) variables to make decisions, i.e. simulate, compare and modify several aspects during the design development, such as Reynolds number, angle of attack, flight altitude among others, was relevant to improve proactivity and creativity. Figure 4 shows students creating their own design in the XFLR5 software.

To conclude this day, a session of technical drawing was conducted in order to compose drawings that visually communicate how the air-models were constructed. At this point, the classroom was arranged to take place discussions, giving to the students an opportunity to create, encourage team working, and propose design alternatives of the air-models. Some rules of thumb were given by the instructors, such as the size of the horizontal and vertical empennage as a function of both, the wing surface and the distance between the aerodynamic center of the wing, and the aerodynamic center of the horizontal tail. In this way, students sketched the air-model three views to realize specification needs during the build process. Figure 5 shows the beginning of the air-model drawing.

Day 3 – Introduction to Electronics

The third day was dedicated exclusively to teach the main basis of electronics, to develop a basic circuit of a light navigation system. To reach this objective, the instructors started to explain the basics of the electricity phenomenon, from the empirical experiments of the Greeks to the latest advances in electronics and its future. Then, more attention was given to the aeronautical field, with the aim of understanding the basic light navigation system of an aircraft. Figure 6 shows the basic scheme of the light navigation system, which indicates the relative position of the aircraft concerning other aircraft and helps to identify the position and direction of flight from the ground perspective.

Students received folding instruction to develop the proposed electronic circuit. They could identify and understand the main components of the circuit, its respective function, and connections. In this way, it was possible to reinforce more theoretical concepts through practice, such as electrical circuit, resistance, conductivity, capacitance, and inductance. Figures 7 and 8 sum up the activities performed by students. Note that Figure 7 shows the proposed electronic circuit, while Fig. 8 shows its respective scheme of connections.

Day 4 – Air-model manufacturing

In this day, students dedicated exclusively to the handicraft air-models manufacturing. The air-models assembly was made in a small physics laboratory, where students had the first real contact with the materials and tools required in the manufacturing process. Each group used a polystyrene sheet of 1m x 1m x 0.5m for the entire design. First of all, students had to build their hot wire cutter of polystyrene to facilitate the cutting process of the aerodynamic surfaces. As the three views of the air-models were previously drawn on A0 paper sheet, students only had to trace those drawings on the polystyrene sheets. Also, the selected airfoils by each group were printed on the appropriate scale, to guide the aerodynamic form of the wing. This technique allowed to obtain well-defined aerodynamic shapes.

After the students’ work during the manufacturing process of the
air-models, instructors conducted a discussion about the main characteristics of the designed models. This discussion was necessary to reinforce the knowledge learned in the previous days, to aid students to prepare the flight test of their models. Finally, students could paint and name their air-models as a recreational activity to treasure their effort during the learning process. Figure 9 records the active participation of the students to manufacture their own designs.

Figure 9. Photographic record of all the participating groups of the science club – aircraft design.

Day 5 – Air-model assembly and flight test

When the assembly of all aerodynamic surfaces concluded, the electronic circuit of the light navigation system was mounted on the air-models. Then, the gravity center of each model was verified by the instructors to perform a flight in a unique trim condition, showing the concept of equilibrium in flight dynamics. These flight tests served to apply information at the real situation, relating theory and practice. Make students get involved in a real flight situation allowed them to identify and recognize problems to figure out solutions.

Day 6 – Science Fair

As explained above, students presented their results in a science fair developed the last day of the science club week. It was an exciting opportunity to share their experiences by describing the compiled data and explaining their main results. The way in which students reported their results were in a printed poster, which was designed by one member of each group. A copy of this poster is showed in Fig. 10. It should be noted that the poster was written in Spanish language.

RESULTS

The learning strategy applied in the science club – aircraft design, provided to students the opportunity to develop some skills that are not practiced in traditional education, mainly due to hands-on activities. During this week, instructors and students realized an improvement in some skills such as creativity to solve problems and critical thinking to make decisions. The main results of this paper are described as follows:

- 3D simulation and the goal of building their own aircraft model, allowed students to get involved in more physics and academic content that help them to understand principles and concepts about aerodynamics.

One-week intensive inspirational classes followed by a showcase in a science fair for the rural community, motivated children to work hard and constant for obtaining results about their models and creations.

Figure 10. Poster created by the students of the science club – aircraft design.
Students by themselves noted that some air-models had difficulties in performing a straight and level flight. However, after several attempts, air-models registered an average time of 18 seconds in flight, reaching a distance of approximately 28 meters. These values represent very satisfactory results due to the intensity of the course and the short time of instruction.

At the end of the week, the camp became a unique experience for both groups: children and scientists. Everybody in the small town talked about science and technology. Children were inspired by the hands-on experience to think about a possible future STEM career. It is important to highlight that two girls attended the science camp – aircraft design, including the five air-models designed.

CONCLUSIONS

This paper describes a STEM learning strategy in aeronautical education, which was developed for the participants of students of the science club 2018 in Túquerres - Nariño. The main objective of this science club was to expand access to high-quality science education in aeronautical engineering, inspiring and mentoring the future generation of scientists through international scientific networks. Our study has provided an example of how young students can participate in processes of engineering design and apply interdisciplinary knowledge to solve interesting problems. Based on this research, the following conclusions and limitations are drawn:

Throughout this article, authors highlighted the importance of teaching engineering using interdisciplinary approaches that establish relations among several disciplines, which is appropriate in the aeronautical engineering context. In this sense, it is clear that the proposed methodology was indispensable to consolidate the presented concepts.

Despite the short time of the course, intensive and hands-on experiential coursework into aeronautical principles to consolidate and build in three days a handheld aircraft model. Also, the use of free software tools, with user-friendly interfaces, helped students to develop some skills like creation and teamwork.

This study was confined to classrooms in just one consolidated group. Therefore, it is necessary to implement this science club in other groups, to take this paper as a reference and compare students’ behavior and acceptability concerning the course.

It is essential to continue with the learning process after the science club – aircraft design to encourage students to continue research in science and engineering. In this case, the existence of research, support, and technological management instruments, committed to the permanent generation of knowledge, may create culture training and aeronautical know-how.

It is expected that the dissemination of the present work to the aeronautical community but also to teachers both, a research perspective of the aeronautical field and support for new research proposals and cooperation frameworks between government entities and universities.

REFERENCES

