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Resumo: os métodos de painéis têm sido amplamente utilizados na indústria 
e estabeleceram-se desde 1970 no cálculo e a análise aerodinâmica. Este ar-
tigo tem como objetivo apresentar uma introdução a um método numérico 
em aerodinâmica altamente usado em CFD (Computational Fluid Dynamics) 
para o cálculo dos coeficientes aerodinâmicos em uma superfície de asa. O ar-
tigo centra-se na apresentação de um resumo detalhado deste método con-
hecido como VLM ou Vortex Lattice Method. É importante notar que este es-
tudo é apresentado como um artigo de reflexão e faz parte de um capítulo de 
uma tese de mestrado em Engenharia Aeroespacial. Portanto, nenhum teste 
ou derivação teórica se realiza. Seu foco principal é fazer um resumo analítico 
de um método computacional amplamente utilizado na aerodinâmica, a fim 
de apresentar ao leitor uma breve introdução matemática do método VLM e 
sua importância no campo aeronáutico.

Palavras-chave: aerodinâmica; coeficientes aerodinâmicos; CFD; métodos 
computacionais; VLM.

Resumen: los métodos de panel han sido ampliamente utilizados en la in-
dustria y se han establecido desde la década de 1970 en el cálculo y el análisis 
aerodinámico. Este artículo tiene como objetivo presentar una introducción a 
un método numérico en aerodinámica altamente utilizado en CFD (Compu-
tational Fluid Dynamics) para el cálculo de coeficientes aerodinámicos en una 
superficie alar. El artículo se enfoca en presentar un resumen detallado de este 
método conocido como VLM o Vortex Lattice Method. Es importante anotar, 
que este estudio se presenta como un artículo de reflexión y hace parte de un 
capítulo de una tesis de maestría en Ingenieria Aeroespacial. Por ende, no rea-
liza ninguna prueba o derivación teórica, su enfoque primario es realizar una 
aproximación analítica de un método computacional utilizado ampliamente 
en aerodinámica con el fin de presentarle al lector una breve introducción 
matemática del método VLM y su importancia en el campo aeronáutico. 

Palabras clave: aerodinámica; coeficientes aerodinámicos; CFD; métodos 
computacionales; VLM.

Abstract: Panel methods have been widely used in industry and are well esta-
blished since the 1970s for aerodynamic analysis and computation. The Vortex 
Lattice Panel Method presented in this study comes across a sophisticated 
method that provides a quick solution time, allows rapid changes in geometry 
and suits well for aerodynamic analysis. The aerospace industry is highly com-
petitive in design efficiency, and perhaps one of the most important factors 
on airplane design and engineering today is multidisciplinary optimization. 
Any cost reduction method in the design cycle of a product becomes vital in 
the success of its outcome. The subsequent sections of this article will further 
explain in depth the theory behind the vortex lattice method, and the reason 
behind its selection as the method for aerodynamic analysis during prelimi-
nary design work and computation within the aerospace industry. This article 
is analytic in nature, and its main objective is to present a mathematical sum-
mary of this widely used computational method in aerodynamics. 

Key Words: Aerodynamics; Aerospace Engineer; Computational Fluid Dyna-
mics – CFD; Lifting Theory; Vortex Lattice Theory.
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Introduction
Finite Wing Aerodynamics

An introduction to finite wing aerodynamics presents 
the basis of the material required in the rationale for this 
study. This section presents background theory for finite 
wing analysis and modern panel numerical methods such 
as vortex lattice.

A wing is a three dimensional body of finite span that 
differs aerodynamically from the airfoil, mainly due to the 
three-dimensional component of the flow in the spanwise-
direction. This spanwise flow is the product of the net im-
balance pressure distribution on the wing causing the flow 
beneath the wing to curl around the wing tips to the low 
pressure region on top. As a result, the streamlines on the 
top surface of the wing shift towards the root chord, and 
the streamlines on the bottom surface shift away from the 
root chord of the wing. Figure 1 illustrates the mechanics 
of the net pressure imbalance and the approximate shift of 
a streamline over the top surface of the wing. According to 
Anderson, J. (1998), this flow establishes a circulatory mo-
tion that trails downstream of the wing creating a trailing 
vortex that is generated by the presence of wingtips. Con-
sequently, the difference in spanwise velocity components 
will cause the formation of streamwise vortices distributed 
along the span.

Figure 1. Physical interpretation of the spanwise flow for a finite 
wing.

The wingtip vortices induce a downward velocity com-
ponent on the wing that combines with the freestream 
velocity V

∞ 
to produce a local relative wind. This effect has 

a direct impact on the airfoil section because the local rela-
tive wind is inclined below the direction of the undisturbed 
free-stream flow, affecting the lift force produced by the 
finite wing.

Introduction to Vortex Induced Drag
It is important to examine the airfoil section of the wing 
and the physical impact that the local relative windhas on 
it. The inclination of the local relative wind in the down-
ward direction changes the angle of attack experienced by 
the airfoil. The effective angle of attack is a consequence of 

this inclination, and becomes the new angle seen by the 
local airfoil section. The distinction between the angle of 
attack seen by the wing and the effective angle of attack 
experienced by the local wing section arises from the in-
teraction of the downward velocity component created by 
the wingtips and the wing itself. This interaction is respon-
sible for the induced angle of attack accounted for in the 
difference between the geometric angle of attack and the 
effective angle of attack. This difference is given by the fol-
lowing equation:

	 [1]

A typical local airfoil section of a finite wing is present-
ed on Figure 2. This figure shows the effect of downwash 
and its impact on the geometric angle of attack.

Figure 2. Effect of the downwash on a typical airfoil section of a 
finite wing.

 The local lift vector which is aligned perpendicular 
with the local relative wind is inclined from the vertical by 
the induced angle of attack α

i. 
As a result, a drag compo-

nent in the direction of V
∞
 is created. This inclination is a 

product of the downwash effect which is the main char-
acteristic of the three dimensional flow encountered on a 
finite wing. This new drag component is defined as vortex 
induced drag denoted by D

i
 in Figure 2. Clearly, induced 

drag is the final result of the net pressure imbalance on the 
finite wing that exists in the direction of V

∞
. 

The aerodynamic phenomenon described in this sec-
tion is critical to this particular research. The development 
of aerodynamic theories that evolved in the 20th century 
focused on mathematical explanations and methods of 
analysis dealing with incompressible flow over finite wings. 
Prandtl’s classical lifting-line theory, modern numerical lift-
ing-line method, lifting surface theory and vortex lattice 
theory are all different methods of aerodynamic analysis 
pertinent to finite wing aerodynamics. The selection of 
vortex lattice theory as the method of choice for the aero-
dynamic analysis in this work, comes as no surprise. The 
sophistication and simplicity of this method and its level of 

i effα α α= −
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numerical implementation far exceeds the capacity of oth-
ers. Even though Prandtl’s classical lifting-line theory pro-
vides a reasonable estimate of the flow field over a wing, 
it is only suitable for straight thin wings at moderate high 
aspect ratio.

However, modern panel methods can quickly and ac-
curately calculate the inviscid flow properties of straight 
and highly swept wings of low aspect ratio (Chen, S., & 
Zhang, F., 2002). Furthermore, numerical panel methods 
convey on additional tools for the analysis of finite wing 
aerodynamics. These tools are the mathematical interpre-
tation of the physical aerodynamic phenomena that gov-
ern finite wing theory. The vortex lattice numerical panel 
method relies on the Biot-Savart law, the curved vortex fil-
ament and the Helmholtz’s theorems to explain the nature 
behind incompressible, inviscid, irrotational flow about a 
finite wing.

Vortex Flow, and Helmholtz’s Theorems
Several tools have been developed to mathematically 
model incompressible inviscid flow. The beauty of relating 
nature through mathematics is an extraordinary achieve-
ment, and it is a set milestone in the science behind aero-
dynamics. 

Laplace’s equation is one of the most widely used 
and extensively studied equations in mathematical phys-
ics (Anderson, 1998). It is through this equation that vor-
tex theory explains the generation of finite lift abiding the 
laws of irrotational and incompressible flow. The elemen-
tary vortex flow and its two dimensional vortex singular-
ity satisfy Laplace’s equation. A vortex flow is a physically 
possible incompressible flow, and irrotational at every 
point except the origin. Vortex flow can be used to model 
lifting surfaces through its unique flow properties. These 
key properties are defined by Helmholtz’s vortex theo-
rems and Kelvin’s circulation theorem. The basic princi-
ples of vortex behavior are known as Helmholtz’s vortex 
theorems and are as follows.

1.	 The strength of a vortex filament is constant along 
its length.

2.	 A vortex filament cannot end in a fluid; it must 
extend to the boundaries of the fluid. The vortex 
line must be closed, extend to infinity, or end at a 
solid boundary.

Kelvin’s circulation theorem on the other hand, states 
that the time rate of change of circulation around a closed 
curve consisting of the same fluid elements is zero. Accord-

ing to Anderson, J. (2001). Kelvin’s theorem is proof that an 
initially irrotational, inviscid flow will remain irrotational.

Vortex theory is essential to the correct modeling of 
lifting surfaces. A sheet of vortices can support a jump in 
tangential velocity while the normal velocity is continuous, 
allowing a vortex sheet to accurately represent a lifting 
surface. The introduction of the two-dimensional vortex 
flow and its properties, paves the way to the analysis of the 
three dimensional vortex flow. In this case, the interaction 
between a three dimensional vortex filament and an ar-
bitrary point in space is described mathematically by the 
Biot-Savart law.

 The purpose of the next section is to explain how the 
theory behind vortex flow can be implemented on three 
dimensional lifting surfaces through the interaction of a 
vortex filament and the surrounding space.

The Vortex Filament, and the Biot-Savart 
Law

The importance of the Biot-Savart law is apparent with 
the introduction of the vortex filament. The Biot-Savart 
law is one of the most fundamental relations in the the-
ory of inviscid, incompressible flow (Anderson, J., 1998). It 
is through this law, where a mathematical expression can 
describe how a vortex filament induces a flow field in the 
surrounding space.

Consider a curved three dimensional vortex filament 
of strength Γ as shown in Figure 3. The filament induces a 
flow in the surrounding space affecting an arbitrary point 
P. The Biot-Savart law states that the vortex filament seg-
ment dl induces a velocity or an increment in velocity at 
point Pequal to:

 [2]

Figure 3. Curved three dimensional vortex filament of strength Γ.

3dV
4

dl r
rπ

Γ ×
=
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The vortex filament of strength Γ is analogous to a 
wire carrying and electric current inducing a magnetic 
field of specific strength to an arbitrary point in space. 
The Biot-Savart law is a general result of potential theory 
capable of describing inviscid, incompressible flows. The 
law by itself is a mathematical tool that can be used to 
model the interaction of various vortex filaments in con-
junction with a uniform freestream. As a result, the veloc-
ity induced by the vortex filament at point P can be ob-
tained by integrating equation 2., over the length of the 
vortex filament. The application of the integral’s bound-
ary conditions is crucial in determining its application; like 
modeling the flow over a finite wing.

The Infinite Vortex Filament
The first case of the application of the Biot-Savart law is the 
infinite vortex. Figure 4 shows a vortex filament of infinite 
length having strength Γ. The velocity induced at point P by 
the entire vortex filament is:

[3]

Equation 3 calls for the definition of the vector cross prod-
uct.  The numerator on the equation can be expressed as:

							     
		   [4]

	
The direction of V in Figure 4 is in the downward di-

rection. Hence, the magnitude of the velocity at point P is 
given by the following equation:

				    [5]

The geometric relations depicted in Figure 4 are of im-
portance for the solution of equation 5.

Figure 4. The infinite vortex filament.

These geometric relations can be expressed through 
the following equations as:

[6]

[7]

[8]

Equations 6 through 8 are substituted in Equation 5 
as follows:

[9]

Thus, the velocity induced at a given point P by an in-
finite, straight vortex filament at a perpendicular distance 
h from P is simply Γ/2πh (Anderson, J., 1998). This result 
represents the foundation of vortex lattice theory. To com-
plete the analysis, two other areas of consideration need to 
be included to complete the geometric and aerodynamic 
analysis behind the horseshoe vortex. 

The Semi-Infinite Vortex Filament
The next case focuses on the semi-infinite vortex. The basis 
of the theory mirrors the infinite vortex case, acknowledg-
ing that the limits of integration change respectively. Fig-
ure 5 represents the typical semi-infinite vortex filament.

 
           Figure 5. Semi-infinite vortex filament.

	 The semi-infinite vortex filament is used in vor-
tex lattice theory to model the vortex extending from the 
wing to downstream infinity. The only mathematical and 
conceptual variations of this vortex filament when com-
pared to the infinite case are the limits of integration of the 
bounded integral.

3V
4

dl r
rπ

∞

−∞
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[10]

The Finite Vortex Filament
The last case to be studied is the finite vortex. The only sub-
stantial change from the previous stated cases, relates to 
the bounded integral of equation 5. According to Figure 
6, the vortex filament of strength Γ is bounded by two an-
gles. This bound vortex is essential to the geometry of the 
horseshoe vortex and its application in the traditional vor-
tex lattice theory.

        Figure 6. The finite vortex filament.

The two angles bounding the finite vortex alter the 
limits of integration of equation 5. Therefore, the velocity 
induced by a vortex filament of strength Γ and a length 
dlat point P is:

[11]

The ability to model a complete lifting surface such as 
a wing through the use of vortex theory is only possible by 
the application of the three vortex filament cases. Vortex 
lattice theory uses the previous systems of vortices and the 
vortex theorems to model aerodynamic phenomena. 

Vortex Lattice Theory
The vortex lattice method uses the combined analysis of 
the vortex filament along with the vortex theorems and 
the Biot-Savart law to model a complete lifting surface. 
The lifting surface or wing is represented by a grid of 
superimposed horseshoe vortices. These horseshoe vor-

tices are each a vortex system that combines the three 
main vortex expressions described on the previous sec-
tion. The velocity induced by each horseshoe vortex at a 
specific control point is calculated using the Biot-Savart 
law. According to Bertin, J., & Smith, M. (1998), a summa-
tion is performed for all control points on the wing to pro-
duce a set of linear algebraic equations for the horseshoe 
vortex strengths that satisfy the boundary condition of no 
flow through the wing. In addition, the vortex strengths 
are related to the wing circulation and the pressure dif-
ferential between the upper and lower surfaces of the 
wing. The vortex lattice method gets its name from the 
geometric distribution of the horseshoe vortices over the 
wing surface, which simulates trapezoidal panels or finite 
elements commonly known as lattices. Figure 7 depicts 
a typical configuration of horseshoe vortices for a stan-
dard wing planform. This figure shows an unswept quar-
ter-chord wing wherethe bound vortex coincides with 
the quarter-chord line of the panel. In a rigorous theoret-
ical analysis, the vortex lattice panels are located on the 
mean camber surface of the wing (Bertin, J., & Smith, M., 
1998). The trailing vortices are aligned parallel to the ve-
hicle axis and extend downstream to infinity. The position 
of both the control point and the bound vortex will be 
determined in the forthcoming sections.

Figure 7. Typical lattice arrangement for a wing planform.

Analysis and Implementation of the Horseshoe 
Vortex

The flow field induced by a horseshoe vortex is of 
great importance to the vortex lattice method. In order 
to describe mathematically this flow field, the use of the 
three vortex filament expressions are necessary to devel-
op the main governing equations of the vortex lattice 
method. A horseshoe vortex consists of one finite length 
vortex and two semi-infinite vortices. This vortex system 
is illustrated in Figure 8. 

The horseshoe vortex and its flow field can be ana-
lyzed by looking into the effect of each individual vortex 
segment. The bound vortex described by segment AB 

0
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represents the third vortex filament case analyzed earlier 
in section about “The Votex Filament, and the Biot-Savart 
Law”. Figure 9 will be used to describe the effect of the 
bound vortex AB on a point C in space whose normal dis-
tance from the bound vortex AB is r

p. 
According to section 

““The Votex Filament, and the Biot-Savart Law”, and the fi-
nite vortex filament case, the magnitude of the velocity in-
duced by the bound vortex AB of strength Γn on point C is:

[12]

The solution of equation 12 calls for the relation be-
tween the angles of the bound vortex filament and the 
vector definitions. The vectors in Figure 8 are defined as:

	 The definitions of the dot product as well as the 
expression for the area of a parallelogram serve as tools to 
derive an expression relating the three main vectors and 
the angles that bound the vortex filament.

Figure 9. New nomenclature for the bound vortex filament.

Hence, the designated vectors and angles of the 
bound vortex filament are expressed in the following way:

 
[13]

 

[14]

 [15]

Expressions 13 through 15 are substituted in equation 
12 with the appropriate vector identities to determine the 
magnitude of the induced velocity by the bound vortex at 
point C. The substitution yields

[16]

Equation 16 is the general expression for the calcula-
tion of the induced velocity for a finite length vortex seg-
ment. In addition, the horseshoe vortex is made up by the 
summation of the finite length vortex segment and two 
trailing vortices that extend to infinity. A general expres-
sion is required for the velocity induced at a point in space 
(x,y,z) by a horseshoe vortex. The derivation of this general 
expression is divided in three main parts that go in accor-
dance with each vortex segment. Figure 10 illustrates the 
case for the horseshoe vortex with a general point in space 
with three spatial coordinates.

     Figure 10. The horseshoe vortex implementation.

The vector definitions needed for the calculation of the 
velocity induced by the bound vortex segment  at point C 
are given by the following expressions:

[17]

	

Figure 8. The horseshoe vortex.

Trailing vortex
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The vector definitions above are substituted in equa-
tion 16 to find the general expression for the induced 
velocity calculation at point C by the bounded vortex fila-
ment AB. The final expression yields

[18]

Where,

And,

The velocity induced by the trailing vortices can be 
calculated using the semi infinite vortex case analysis. This 
vortex case calls for a new vector definition that recognizes 
a third point on the vortex filament that extends to infini-
ty represented by point D. The new vector definitions will 
keep the same numbering notation used earlier for the ex-
planation of the bound vortex. Figure 11 illustrates the new 
vector expression.

 

Figure 11. Trailing vortex nomenclature.

[19]

The derivation for the velocity induced at point C by 
the trailing vortex is the same as for the bound vortex. The 
only difference in this case is perceived when x

3 
goes to 

infinity. Taking this into consideration, the contribution of 
the trailing vortex is expressed as:

[20]

And,
[21]

In general, the total velocity induced by a horseshoe 
vortex at a point in space C is given by the summation of 
the contribution of the bound vortex and the two trailing 
vortices. In fact, the general expression for this velocity is 
given by:

[22]

Since Γn is contained linearly in each expression, the 
equations representing each vortex filament (2.18, 2.20, 
and 2.21) can be expressed in a much simpler form. Al-
lowing point C to be the control point of the mth panel 
designated by the coordinates (xm, ym, zm), the new ex-
pression becomes:

[23]

Equation 23 is the velocity induced at the mth con-
trol point by the horseshoe vortex representing the nth 
panel. The influence coefficient  depends on the geom-
etry of the nth horseshoe vortex and its distance from 
the control point of the mth panel (Bertin, J., & Smith, M., 
1998). In order to find the total induced velocity at the 
mth control point induced by the 2N vortices, equation 
23 is expressed as

[24]

Each control point lies within a horseshoe vortex rep-
resenting a surface element. Hence, a lifting surface such 
as a wing is represented by a combination of these sur-
face elements. The location of the horseshoe vortex and 
its control point is determined by a mathematical analysis 
described in the following section. According to (Bertin, 
J., & Smith, M., 1998), tradition has been to determine 
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Thus, the control point is located at the three quar-
ter-chord location, and the bound vortex is located at the 
quarter-chord location. Both, the position of the bound 
vortex and the control point are functions of the chord 
length and the panel geometry. 

	
Analysis and Application of the Boundary 
Conditions
The solution of the induced velocity at a control point in 
space by a horseshoe vortex is possible through the ap-
plication of the boundary conditions. The vortex strength 
Γ

n 
in equation 24 represents the lifting flow field of the 

wing. In order to solve for this flow field, the surface is 
considered a streamline. The resultant flow is tangent to 
the wing at each and every control point. As a result, the 
component of the induced velocity normal to the wing 
at the control point balances the normal component of 
the free-stream velocity. The tangency condition yields 
the following relation.

[28]

where δm is the slope of the mean camber line at the 
control point and  is the dihedral angle of the wing. Equa-
tion 28 can be simplified according to the shape of the 
airfoil section and the slope of the mean camber line. The 
tangency condition will give the solution for the system of 
simultaneous equations represented by equation 24. The 
unknown vortex strengths of each surface elements or 
panels are found through this solution.

Conclusion
Vortex lattice theory presents an alternative to different 
computational fluid dynamic methods. It is a quick tech-
nique that works well for the calculation of the lift coef-
ficient and pressure distribution of a wing with angle of 
attack variation under conditions where there is no signif-
icant flow separation over a finite surface. It serves well as 
a method of computational fluid dynamics and can prove 
as an aerodynamic optimization technique that could 
extend its application to different Mach number regimes 
through the potential of adapting compressibility cor-
rections to model flow. The use of Vortex Lattice Theory 
presents an opportunity for the aerospace engineer to 
come up with fast solutions for the calculation of aero-
dynamic coefficients where otherwise, the complexity 
of other computational fluid dynamic alternatives would 
have proven difficult and time consuming affecting the 

their locations by comparisons with known results. Their 
placement has become a rule of thumb in numerical pan-
el methods.

Location of the Control Point and Bound 
Vortex
The location of both the control point and the bound vor-
tex is determined not by a theoretical law, but instead by 
a placement that works well in accordance to theory. Ac-
cording to Bertin, J., & Smith, M. (1998), the control point 
of each panel is centered spanwise on the three-quarter 
chord line midway between the trailing vortex legs. Figure 
12 illustrates the placement of the control point and the 
bound vortex.

Figure 12. Control Point and Bound Vortex placement.

The vortex filament of strength Γ positioned at the 
quarter chord location, induces a velocity at the control 
point cp given by

This result agrees with the infinite vortex filament 
case described earlier in sub-section “The Infinite Vortex 
Filament”. According to Bertin, J. & Smith, M. (1998), if the 
flow is to be parallel to the surface at the control point, the 
incidence of the surface relative to the free stream can be 
expressed as:

[25]

In order to solve for the unknown distance r, equation 
25 calls for combined use of the Kutta-Joukowsky theorem 
and the results from thin airfoil theory. The combination of 
both relations gives the following result

[26]

Equation 25 is then substituted in equation 26; as a re-
sult, the unknown distance r can be solved as a function of 
the chord length.

[27] 
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release and timeline of design elements crucial for the 
end project or result.
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